Электронные усилители. Общие сведения, параметры и схемы. Предварительный каскад унч Усилитель постоянного тока в интегральном исполнении


Усилительный режим транзистора определяется постоянными напряжениями между электродами и токами, протекающими в цепях электродов. Их задают элементы внешних цепей транзистора, которые составляют схему его включения. Усилительный прибор, его обвязка, источник питания и нагрузка образуют усилительный каскад .

Рис.20 Схема усилительного каскада на транзисторе с ОЭ

Обозначения в схеме:

R ВХ. V ~ и R ВЫХ. V ~ - входное и выходное сопротивления транзистора V1 переменному току без

учёта элементов внешней цепи (обвязки).

R ВХ.~ и R ВЫХ.~ - входное и выходное сопротивления усилительного каскада.

R U - сопротивление источника сигнала.

R Н~ - эквивалентное сопротивление нагрузки каскада переменному току.

R ВХ.СЛ - входное сопротивление следующего каскада.

U m .ВХ - амплитуда входного сигнала.

U m .ВЫХ - амплитуда выходного сигнала.

Примечание: Все сопротивления цепей измерены в направлении стрелки при разрыве схемы вдоль пунктирных линий.

Независимо от схемы включения транзистора: с общим эмиттером (ОЭ), общей базой (ОБ) или общим коллектором (ОК) назначение элементов усилительного каскада одинаково.

Рассмотрим назначения элементов стандартной обвязки транзистора включённого с общим эмиттером (ОЭ) в типовой схеме усилительного каскада (Рис.20).

Развязывающий фильтр по питанию R ф С ф .

При питании усилителя от выпрямителя фильтр по питанию R ф С Ф обеспечивает сглаживание пульсаций выпрямленного напряжения электрической сети Е К .

Сопротивление резистора R Ф выбирается из расчёта допустимого снижения к.п.д. усилителя и лежит в пределах от долей Ома в оконечных каскадах до единиц кОм в маломощных каскадах, так чтобы ΔU = (0,1…0,2) E K . Тогда ёмкость конденсатора С Ф для звуковых частот может достигать десятки и сотни мкФ, а для её расчёта можно пользоваться приближённой формулой

С Ф > 10 (2π F Н R Ф )

Базовый делитель R Б1 R Б2 .

Два резистора R Б1 и R Б2 , включённых последовательно по постоянному току между шиной питания E K и общим проводом, являются базовым делителем напряжения питания и образуют начальное базовое смещение U 0Б = U Б – U Э между базой и эмиттером транзистора V1. Это напряжение U 0б определяет режим работы транзистора: А, В или АВ.

Чем меньше сопротивления резисторов R Б1 R Б2 тем выше температурная стабильность каскада, но при этом недопустимо снижается входное сопротивление каскада по переменному току R ВХ~ , для которого R Б1 , R Б2 и R ВХ. V ~ (входное сопротивление транзистора) включены параллельно .

R ВХ~ = (R ВХ. V ~ R Б ) (R ВХ. V ~ +R Б ), где R Б = (R Б1 R Б2 ) (R Б1 + R Б2 )

Поэтому типовыми значениями номиналов резисторов базового делителя для каскадов предварительного усиления являются: R Б1 – десятки кОм, R Б2 – единицы - десятки кОм.

Сопротивление коллекторной нагрузки R К.

Резистор R К образует путь протекания коллекторного тока покоя I 0К , который определяется выбранным режимом работы транзистора V1 (А, В или АВ).

В сильной степени сопротивление коллекторной нагрузки R К влияет на усилительные свойства транзистора, так как от его номинала зависит угол наклона выходной динамической характеристики. Чем больше сопротивление резистора R К (десятки кОм) тем больше коэффициент усиления каскада по напряжению К U и, наоборот, чем меньше R К (сотни Ом) – тем больше коэффициент усиления по току К I .

Максимальное усиление мощности будет при соизмеримых значениях R К и R ВЫХ. V ~ (выходного сопротивления транзистора переменному току).

По переменному току сигнала сопротивление коллекторной нагрузки R К включено параллельно R ВЫХ. V ~ и может привести к недопустимому снижению выходного сопротивления каскада R ВЫХ.~ .

Резистор автосмещения R Э.

Эмиттерный ток транзистора I Э (как постоянный I 0Э так и переменный I m Э ), протекая через резистор R Э образует на нём падение напряжения U Э . Это напряжение является напряжением обратной связи U ОС , так как связано с входными параметрами транзистора выражением: U 0Б = U Б – U Э,

где U Б – напряжение на базе V1, измеренное по отношению общего провода.

Как будет доказано в последующих темах, отрицательная обратная связь (ООС) противодействует изменению параметров усилительного каскада, обеспечивая стабилизацию его режима, в том числе и температурного.

Например, повышение температуры tºС вызывает увеличение эмиттерного тока I 0Э и U Э , но при этом автоматически уменьшается начальное базовое смещение U 0Б = U Б – U Э , которое подзапирает транзистор и, как следствие, уменьшает эмиттерный ток, компенсируя его зависимость от температуры. Отсюда название R Э – резистор автосмещения . Таким образом ООС по постоянному току благоприятно сказывается на стабильность режима работы усилительного каскада.

Но за счёт протекания тока сигнала I m Э через R Э образуется ООС по переменному току, которая уменьшает, к сожалению, коэффициент усиления каскада. Включив параллельно резистору R Э конденсатор большой ёмкости С Э , можно уменьшить эквивалентное сопротивление эмиттерной цепи на несколько порядков для самых низких рабочих частот.

Конденсатор С Э предназначен для устранения отрицательной обратной связи по переменному току , в результате чего можно избежать снижения коэффициента усиления.

Разделительные конденсаторы С Р1 С Р2 устраняют связь между каскадами по постоянному току. При их отсутствии режимы работы всех транзисторов гальванически (непосредственно) связанных между собой будут взаимозависимы. Причём, незначительное изменение режима первого транзистора за счёт усилительных свойств приведёт к недопустимому изменению режима последнего.

Емкость межкаскадного разделительного конденсатора в усилителях звуковых частот УЗЧ достигают десятки и сотни микрофарад (мкФ), а выходного разделительного конденсатора, перед громкоговорителем – тысячи мкФ. В высокочастотных цепях ёмкость С Р уменьшается обратно пропорционально рабочей частоте. При использовании полевого транзистора с большим входным сопротивлением, С Р составляет доли мкФ (например 0,1 мкФ).

2. Принцип работы усилительного каскада (Рис.22)

В режиме покоя (при отсутствие сигнала) постоянная составляющая коллекторного тока I 0К протекает от +Е К через R К , переход ЭК VT 1 , R Э , - Е К . Постоянная составляющая коллекторного напряжения, если считать I 0Э ≈ I 0К , равна:

U 0К = Е К - I 0К (R К + R Э)

В усилительном режиме , при подаче сигнала на вход каскада переменная составляющая тока коллекторной цепи I m К протекает по нескольким параллельным цепям:

1. ЭК VT 1 → С Р2 → ЭБ VT 2 → -Е К (общий провод);

2. ЭК VT 1 → R К → С Ф → -Е К;

3. ЭК VT 1 → С р2 → R Б1 → С Ф → -Е К;

4. ЭК VT 1 → С Р2 → R Б2 → -Е К.

Таким образом, полным сопротивлением нагрузки для переменного тока сигнала R н~ является эквивалентное сопротивление параллельно включённых R К, R Б1 , R Б2 , R ВХ. V 2 ,

R Н~ = (R К R ВХ.СЛ. ) (R К +R ВХ.СЛ. ),

где R ВХ.СЛ = (R ВХ. V 2~ R Б1 R Б2 ) (R ВХ. V 2~ R Б1 + R ВХ. V 2~ R Б2 + R Б1 R Б2 )

Рис.22 Схема усилительного каскада с ОЭ.

Полезной является только составляющая выходного тока усиленного сигнала I m Б2 , протекающая по первой из перечисленных ветвей, так как только она будет усиливаться в следующем усилительном каскаде. Остальные постоянные и переменные токи, протекая через элементы обвязки транзистора, приведут к рассеиванию энергии источника питания и сигнала, снижая к.п.д каскада.

Прохождение и обработка сигнала в цепях усилительного каскада наглядно видно по осциллограммам в характерных точках схемы, приведённых на Рис.22.

При подаче на вход каскада сигнала U m .ВХ ранее постоянные напряжения в схеме U 0Б, U 0К, U 0Э станут пульсирующими U m Б, U m К, U m Э , изменяясь синхронно амплитуде входного сигнала. На осциллограммах видно, что напряжения сигналов U m Б, U m К, U m Э , буду смещены по отношению оси времени в положительную или отрицательную область на величину постоянных потенциалов в этих точках U 0Б, U 0К, U 0Э, в зависимости от полярности источника питания “+ Е К ” или “- Е К ” .

Только при единственном включении транзистора по схеме с ОЭ фаза выходного сигнала (осциллограммы U m К и как следствие U m .ВЫХ ), снимаемого с коллектора изменится на 180º. Поэтому каскад с включением транзистора по схеме с ОЭ называется инверсным . При других включениях транзистора с ОК и ОБ выходной и входной сигналы всегда совпадают по фазе .

Для определения схемы включения транзистора с ОЭ, ОК, ОБ необходимо пользоваться следующим правилом (пример для ОЭ):

Если входной сигнал подаётся в базовую цепь транзистора, а выходной снимается с коллектора , то третий электрод – эмиттер , является общим для входного и выходного сигнала независимо от того, как он включён в схему.

На Рис.23 и Рис.24 представлены схемы с включением транзисторов с общим коллектором ОК и общей базой ОБ и приведены их особенности.

Рис.23 Схема усилительного каскада с ОК.

Важными свойствам усилительного каскада с транзистором, включенным с ОК являются:

1. Большое входное R ВХ (десятки кОм ) и малое выходное (десятки Ом ) сопротивления, что улучшает согласование с предыдущими и последующими каскадами.

2. Входной сигнал не инвертируется, т.е. входной U ВХ и выходной U ВЫХ сигналы совпадают по фазе (φ = 0).

3. Коэффициент усиления по напряжению меньше единицы (К U < 1 , но К I >> 1).

Рис.24 Схема усилительного каскада с ОБ.

Свойство транзисторного усилительного каскада с ОБ противоположные свойствам каскада с ОК. Каскады с включением транзистора по схеме с ОБ в низкочастотных усилителях УНЧ (звуковых частот УЗЧ) практически не используются.

Каскады предварительного усиления Общие сведения. Предварительный усилитель усиливает коле-бания напряжения или тока источника сигнала до значений, кото-рые необходимо подать на вход оконечного каскада для получения в нагрузке заданной мощности. Предварительный усилитель может быть одно- и многокаскадным. Транзисторы в каскадах предвари-тельного усиления включают с ОЭ, а лампы — с общим катодом, что позволяет получить наибольшее усиление . Включение транзистора с ОБ целесообразно во входных каскадах, работающих от источника сигнала с малым внутренним сопротивлением. Для уменьшения нелинейных искажений в каскадах предварительного усиления предпочтителен режим А.

  • По виду связи между каскада-ми (при многокаскадном выполнении усилителей) различают усили-тели с емкостной,
  • трансформаторной
  • гальванической связью (уси-лители постоянного тока).

Усилители с емкостной связью. Усилители с емкостной или ЯС-бвязью имеют широкое применение.. Они просты в конструкции и наладке, дешевы, обладают стабильными характеристиками, на-дежны в работе, имеют небольшие размеры и массу. Типовые схе-мы усилителя на транзисторах и лампах с емкостной связью Частотная характеристика резисторного каскада с емкостной связью может быть разделена на три области частот: нижних НЧ, средних СЧ и верхних ВЧ. В области нижних частот коэффициент усиления Kн снижается (с уменьшением частоты) в ос-новном из-за увеличения сопротивления конденсатора межкас-кадной связи Ср1. Емкость этого конденсатора выбирают достаточ-но большой, что снизит падение напряжения на нем. Обычно низ-кочастотный диапазон ограничивается частотой fH, на которой ко-эффициент усиления снижается до 0,7 среднечастотного значения, т. е. Kн=0,7K0. В области средних частот, составляющих основную часть рабочего диапазона усилителя, коэффициент усиления Kо практически не зависит от частоты. В области верхних частот fB снижение усиления Kв обусловлено емкостью Со=/=Свых+См+Свх (где Свых — емкость усилительного элемента каскада; См — емкость монтажа, Свх — емкость усилительного элемента следующего кас-када) . Эту емкость всегда стремятся свести к минимуму, чтобы ограничить через нее ток сигнала и обеспечить большой коэффициент усиления. Расчет резисторного каскада предварительного усиления. Ис-ходные данные: полоса усиливаемых частот fн-fв = 100-4000 Гц, коэффициент частотных искажений MH

  • 1. Выбор типа транзистора. Ток коллектора каскада, при ко-тором обеспечивается амплитуда входного тока следующего кас-када Iвх.тсл, Iк= (1,25ч- 1,5)IЕх.отсл = .(1,25-7-1,5) 12= 15-5-18 мА. При-мем Iк=15 мА. По току Iк и граничной частоте, которая должна бытьfашга>3fв|Зср = 3fв(Рмин + Рмакс)/2 = 3-4000(30 + 60)/2 =
  • =540000 Гц=0,54 МГц, выбираем для каскада транзистор МП41 со следующими параметрами: Iк=40 мА; UКэ=15 В; |3мин = 30; рмакс=60;fамин = 1МГц.
  • 2. Определение сопротивлений резисторов RK и Ra. Эти сопро-тивления определяют, исходя из падения напряжения на них. При-мем падение напряжения на резисторах R* и Rэ соответственно 0,4 Ек и 0,2 Ек, Выбираем резисторы МЛТ-0,25 270 Ом и МЛТ-0,25 130 Ом.
  • 3. Напряжение между эмиттером и коллектором транзистора в рабочей точке икэо=Ек — !K(RK+Ra) = lQ — 15-10-3(270+130)=4 В. При Uкэо=4 В и Iк=15 мА по статическим выходным характеристи-
  • кам (рис. 94, а), определяем ток базы Iбо=200 мкА в рабочей точке О". По входной статической характеристике транзистора (рис. 94, б) икэ=5 В для Iбо=200 мкА определяем напряжение смещения в ра-бочей точке О/Uбэо=0,22 В.
  • 4. Для определения входного сопротивления транзистора в точке О" проводим касательную к входной характеристике транзистора. Входное сопротивление определяется тангенсом угла наклона каса-тельной
  • 5. Определение-делителя, напряжения смещения. Сопротивле-ние резистора R2 делителя принимают R2=(5-15)Rвх.э. Примем R2=6Rвх.э=6-270 =1620 Ом. Выбираем по ГОСТу резистор МЛТ-0,25 1,8 кОм. Ток делителя в каскадах предварительного уси-ления принимают Iд=(3-10)Iбо=(З-10) -200=600-2000 мкА. При-мем Iд=2 мА. Сопротивление резистора R1 делителя Выбираем по ГОСТу резистор МЛТ-0,25 3,9 кОм.
  • 6. Расчет емкостей. Емкость конденсатора межкаскадной свя-зи определяют, исходя из допустимых частотных искажений Ms, вносимых на низшей рабочей частоте Емкость конденсатора Примем электролитический конденсатор емкостью 47 мкФ с Uраб>ДURЭ=0,2 Eк=0,2-10=2 В.

Усилители с трансформаторной связью . Каскады предварительного усиления с трансформаторной связью обеспечивают лучшее-согласование усилительных каскадов по сравнению с каскадами с резисторной емкостной связью и применяются в качестве инверсных для подачи сигнала на двухтактный выходной каскад. Нередко трансформатор используют в качестве входного устройства.

Схемы усилительных каскадов с последовательным и параллельным включением трансформатора показаны на. Схема с последовательно включенным трансформатором не содержит резистора RK в коллекторной цепи, поэтому обладает более высо-ким выходным сопротивлением каскада, равным выходному сопро-тивлению транзистора, и применяется чаще. В схеме с параллельно включенным трансформатором требуется переходной конденсатор С. Недостатком этой схемы являются дополнительные потери мощно-сти сигнала в резисторе RK и снижение выходного сопротивления вследствие шунтирующего действия этого резистора. Нагрузкой трансформаторного каскада обычно служит относи-тельно низкое входное сопротивление последующего каскада. В этом случае для межкаскадной связи используют понижающие транс форматоры с коэффициентом трансформации n2=*RB/R"H

Частотная характеристика усилителя с трансформаторной связью имеет снижение коэффициента усиления в области нижних и верхних частот. В области нижних частот спад коэффи-циента усиления каскада объясняется уменьшением индуктивного сопротивления обмоток трансформатора, вследствие чего возрастает их шунтирующее де.йствие входной и выходной цепей каскада и снижается коэффициент усиления К=Kо/. На средних частотах влиянием реактивных эле-ментов можно пренебречь. В области верхних частот на коэффициент уси-ления влияют емкость коллекторного перехода Ск и индуктивность рассеи-вания ls обмоток трансформатора. На некоторой частоте емкость Ск и индуктивность Is могут вызвать резонанс напряжения, вследствие че-го на этой частоте возможен подъем частотной характеристики. Иногда этим пользуются для коррекции час-тотной характеристики усилителя.

Каскады предварительного усиления. Типовой источник сигнала раньше развивал выходное напряжение на уровне 50-200 мВ. На это напряжение ориентировали высококачественные усилители. Между входными гнездами и сеткой первой лампы раньше располагали корректирующие цепи, в которых сигнал ослаблялся минимум вдвое (6 дБ) на самом чувствительном входе. В тонкомпенсированном регуляторе громкости минимальное ослабление сигнала составляет еще 6дБ. Регуляторы тембра, обеспечивающие глубину регулирования ±20дБ, обычно ослабляют сигнал еще на 30-40дБ. При наличии во входных цепях катодных повторителей потери сигнала возрастали еще на 3-6дБ. Итак, общее затухание сигнала раньше составляло 45-58дб. Величина напряжения сигнала на сетках ламп оконечного каскада составляет в среднем 10-20 в. Отношение этой величины к входному напряжению сигнала составляет 10/0,05 = 200 (46 дБ). Итак, усиление предварительных каскадов с учетом затухания сигнала и необходимого напряжения на сетках ламп оконечного каскада раньше должно было иметь величину порядка 90-100 дб. Иначе говоря, коэффициент усиления предварительных каскадов должен быть равен примерно 100000. Это довольно значительная для низкочастотного усилителя величина. Если коэффициент усиления по напряжению каждого из усилительных каскадов равен примерно 10, то, очевидно, число каскадов должно быть равно 5. При коэффициенте усиления каждого каскада порядка 100 общее количество каскадов будет равно 3 (с некоторым запасом). Поскольку коэффициент усиления, равный 10 на каждый каскад, обеспечивает практически любой современный низкочастотный ламповый триод, а коэффициент усиления 100 на каскад является предельным даже для хороших НЧ пентодов, то можно утверждать, что для ламповых усилителей число каскадов предварительного усиления должно лежать в пределах от трех до пяти.

Сколько же каскадов делать: 3 или 5? Первым, разумеется, напрашивается ответ "3". Однако не стоит торопиться. Три каскада - это значит минимальный коэффициент усиления каскада равен корню третьей степени из 10000. Заметим, что это не μ лампы, а коэффициент усиления каскада, который редко превышает 50% от μ лампы. Следовательно, триоды отпадают. Значит, будет три каскада на пентодах или, в крайнем случае, два на пентодах и один на триоде. Последняя схема, не имеющая никакого запаса по усилению, не позволяет использовать в схеме отрицательную обратную связь, т.е. практически непригодна для Hi-Fi - усилителей, ибо без отрицательной обратной связи немыслимо снизить коэффициент нелинейных искажений и расширить частотный диапазон до требуемых величин. Три каскада на пентодах могут позволить ввести отрицательную обратную связь, но тогда на пентоде оказывается собран и первый, входной каскад, а в этом случае, как показывает опыт, практически невозможно добиться полного отсутствия микрофонного эффекта и уровня фона ниже - 60 дб. Другая крайность - пять каскадов на триодах - всегда обеспечивает нужный коэффициент усиления даже на самых плохих лампах, однако, применяя лампы со средним коэффициентом усиления порядка 20-50, без труда удается получить требуемый коэффициент усиления с достаточным запасом при четырех триодах (т. е. на двух сдвоенных лампах). Такая схема и является наиболее распространенной. Правда, многие зарубежные фирмы выпускают специально разработанный пентод для входного каскада с малым уровнем собственных шумов и не склонный к микрофонному эффекту (EF-184, EF-804 и др.). Применяя такой пентод и последующие триоды с большим μ (90-120) по типу ЕСС-83, удается получить нужный коэффициент усиления на трех каскадах по системе пентод - триод – триод, но во-первых, такая система требует применения специальных ламп, а во-вторых - очень высокого качества трансформаторной стали, высокочувствительных оконечных ламп и т.д. Поэтому такая схема не подходит.

Примечание. В 21 веке ситуация существенно изменилась. Физические аналоговые каскады предварительного усиления сейчас никто не городит. Предварительную обработку сигнала доверяют высококачественным ЦАПам. Входной сигнал считают нормой в 1-2 вольта. Поэтому для лампового оконечника достаточно усиления в 20-50 раз. А с такой задачей справляется одна электронная лампа в каскаде предварительного усиления. Это, например, двойной триод, в котором совмещены функции фазоинвертора. Именно поэтому весь мусор от многочисленных последовательных каскадов остался в далёком прошлом. Евгений Бортник.

Фазоинверторы. Если фазоинвертор собран по схеме, в которой каждое плечо является одновременно и усилителем (например, по схеме рис.1), то коэффициент усиления этого плеча учитывается в общем усилении тракта. Напоминаем, что учитывать нужно усиление только одного плеча, так как второе плечо инвертора является лишь согласователем для второго плеча двухтактного оконечного каскада и не входит в общий усилительный тракт.

Если же фазоинвертор собран по схеме симметричного катодного повторителя (рис.2), то его коэффициент усиления всегда меньше единицы, поэтому такой каскад не только не является усилительным каскадом, но еще требует дополнительного увеличения общего усиления на 4-6 дб.

Методика выбора коэффициента усиления для усилителя на транзисторах совершенно та же. Теперь конкретно о самих схемах каскадов предварительного усиления (КПУ). Это - простейшие резистивные усилители без каких-либо схемных особенностей. Типичным для всех каскадов, как на триодах, так и на пентодах, являются уменьшенные в 2-5 раз по сравнению с оптимальными расчетными величинами анодных (коллекторных) нагрузок для расширения полосы пропускания в сторону более высоких частот, увеличенные до 0,1-0,25 мкф переходные конденсаторы и до 1-1,5 Мом резисторы утечки сетки для снижения спада частотной характеристики на низких частотах, применение отрицательной обратной связи по току во всех каскадах, кроме того, на котором собран блок регулировок частотной характеристики. Что касается самих усилительных элементов, то за последние годы появилось множество различных новых типов ламп и транзисторов с отличными параметрами. Так, величина S у маломощных ламп стала равна 30-50 мА/В против привычных значений 3-10 мА/В, в связи с чем резко возросла чувствительность ламп. Подсчеты показывают, что теоретически все предварительное усиление можно получить даже на двух каскадах с такими лампами. Однако полезно будет предостеречь любителей от поспешности в выборе таких ламп. И дело здесь не в консерватизме, а в том, что увеличение, скажем, крутизны ламп достигается резким уменьшением зазора между управляющей сеткой и катодом, что значительно повышает склонность лампы к появлению термотоков и вытекающих из этого огромных нелинейных искажений. Немаловажны, также большая стоимость и меньшая долговечность таких ламп. Можно утверждать, что такие проверенные многолетней практикой лампы как 6Н1П, 6Н2П, 6НЗП, 6Н23П, 6Н24П, 6Ж1П, 6Ж5П вполне годятся для предварительных каскадов даже самых лучших, самых современных усилителей. Для примера, ниже показаны несколько схем КПУ на лампах в их обычных режимах

На рис.3. показаны каскады предварительного усиления на лампах. а - двухкаскадный усилитель с междукаскадной внутренней обратной связью; б - каскад с линеаризирующей обратной связью в цепи защитной сетки.

Оконечные и предоконечные каскады – усилители мощности. Формально предоконечные каскады (драйверы, от английского слова drive - возбуждать, задавать, раскачивать) относят к усилителям напряжения, т. е. к предварительным каскадам, однако рассмотрены они в этом, а не в предыдущем параграфе, чтобы подчеркнуть, что по характеру работы и по режимам использования драйверы значительно ближе к оконечным усилителям, т.е. усилителям мощности. Для Hi-Fi усилителей характерна значительная величина выходной мощности порядка 15-50Вт. Это значит, что для возбуждения (раскачки) оконечного каскада без заметных нелинейных искажений уже требуется мощность порядка 1-5Вт, при напряжении до 25-35В, а если учесть требования к уменьшению нелинейных искажений, то становится ясным, что обычные маломощные триоды не могут обеспечить возбуждения мощных оконечных ламп. Поэтому логичным и оправданным становится использование в последнем каскаде усиления напряжения мощных ламп. Возможно, что теоретически более правильно предоконечные каскады во всех случаях делать трансформаторными или дроссельными, чтобы получить наибольшую величину коэффициента использования по анодному напряжению ξ, однако есть несколько соображений, почему этого делать не следует. Трансформаторный каскад всегда вносит заметные частотные искажения, а при мощностях свыше 1-2 вт и ощутимые нелинейные искажения. К тому же трансформаторы относительно дороги, сложны и трудоемки в изготовлении, тяжелы и громоздки, чувствительны к магнитным наводкам и одновременно являются источником наводок звуковой частоты для других цепей усилителя (в первую очередь входных).

В то же время в распоряжении радиолюбителей сейчас есть лампы средней мощности, широкополосные и экономичные, позволяющие без труда получить неискаженную мощность порядка 2-4Вт на активном сопротивлении нагрузки. К ним в первую очередь нужно отнести лампы типов 6П15П, 6Э5П, 6Ф3П, 6Ф4П, 6Ф5П, 6Ж5П, 6Ж9П и др. Впрочем, к этому вопросу нужно подходить внимательнее. В ряде случаев по соображениям более простого согласования всё же целесообразно использовать трансформаторную связь. Схемы предоконечных усилителей показаны ниже

Для оконечных НЧ каскадов мощностью до 10-12 Вт радиолюбители в большинстве случаев используют лампы типа 6П14П отчасти потому, что они довольно легко обеспечивают получение указанной мощности. Кроме того, других подходящих для этой цели ламп, к сожалению, нет. Такую устаревшую, хотя и очень неплохую лампу, как 6П3С (6L6) в наше время рекомендовать нельзя, а более мощных специальных ламп для оконечных каскадов УНЧ по типу немецкой EL-34 промышленность не выпускает. [Странное заключение, безо всяких оснований, в 1980-90 гг нельзя рекомендовать применение 6П3С! Чистый волюнтаризм из совдепии. В 21 веке, например, лампы 6П3С могут быть настойчиво рекомендованы для конструирования лампового усилителя. Важно найти экземпляры в хорошей сохранности. Е.Б.] Нередко люди пытаются путем форсирования режима получить большую мощность от тех же ламп 6П14П, однако такой путь совершенно недопустим из-за резкого ухудшения надежности усилителя и возрастания нелинейных искажений при появлении сеточного термотока.

Учитывая сказанное, можно рекомендовать радиолюбителям применять лампы 6П14П в любых двухтактных схемах только при мощностях, не превосходящих 10 вт. [Поразительно бессмысленная рекомендация в стиле, «раз ничего хорошего нету, ну и делайте, то, что делаете». Автор вроде крутой авторитет, а пишет ахинею. Е.Б.] При большей выходной мощности надо переходить на такие явно не "низкочастотные" лампы, как 6П31С, 6П36С, 6П20С, ГУ-50, 6Н13С (6Н5С) как в классических двухтактных и ультралинейных схемах, так и в менее знакомых радиолюбителям мостовых схемах, называемых также двухтактно-параллельными. Первые три из указанных ламп предназначены для использования в оконечных каскадах строчной развертки телевизоров и позволяют снимать с двух ламп мощность до 25Вт, генераторная лампа ГУ-50 при анодном напряжении 500-750 в (а она по паспорту имеет Uа.раб = 1000 в) легко отдает в двухтактной схеме мощность 40-60Вт; двойной триод 6Н13С, сконструированный специально как управляющая лампа в схемах электронных стабилизаторов напряжения, имеет очень низкое внутреннее сопротивление и при сравнительно небольшом анодном напряжении позволяет получить в обычной двухтактной схеме мощность не менее 15Вт (на один баллон), а при включении в каждом плече по два триода параллельно (два баллона) в обычной двухтактной и в мостовой схемах обеспечивает выходную мощность до 25вт. Используя перечисленные лампы, радиолюбитель получает большой выбор для творческой деятельности.

[Очередная рекомендация в смутном состоянии сознания. Интересно, почему для творческой деятельности не подходят сдвоенные или строенные лампы? Может автор просто не знает правила параллельного соединения радиоэлементов? А именно параллельное соединение, при качественном подборе экземпляров, даёт массу промежуточных вариантов очень мощных усилителей с достойными характеристиками. Странно читать рекомендацию лампы 6П31С, которая ничуть не мощнее, чем 6П14П, зато значительно кривее по характеристикам. А ещё с разочарованием приходится наблюдать резвые рекомендации в применении ламп 6Н13С (запараллеленных кстати). Удивительная демонстрация легкомыслия, поскольку автор совершенно не ориентируется в практике, ведь лампы 6Н13С редкостное гуано. Разброс характеристик половинок имеет диапазон 100% и более. Их практически невозможно точно подобрать для параллельного включения, поэтому усилитель не может выдать значительную мощность в нагрузку без перегрева одной из половинок, и коэффициент использования вряд ли превысит 40-50%. И простые схемы параллельного включения для 6Н13С, без выравнивающих обвесов, непригодны. А рассуждения про лампы умиляют, ведь есть большое количество других превосходных ламп, в отличие от рекомендованных, например 6П13С, 6П44С, 6П45С, Г807, в крайнем случае годятся лампы 6Р3С. Е.Б.]

Рис.5. Мощные оконечные каскады низкочастотного тракта УНЧ. а - на лампах 6П36С в ультралинейном включении; б - на лампах ГУ-50 в двухтактно-параллельной схеме; в - на лампах 6Н13С с балансировкой фиксированного смещения

Поскольку все схемы были рассмотрены как низкочастотные, т.е. рассчитанные на ограниченную полосу пропускания (не свыше 5-8 кГц), ничего не говорилось о выходных трансформаторах, дросселях, и автотрансформаторах. Все они - самые обычные, собранные на Ш-образных или ленточных сердечниках из простой трансформаторной стали толщиной 0,35мм. К конструкции каркаса и обмоткам не предъявляется повышенных требований, за исключением высокой степени симметрии отдельных половин первичной обмотки. Это требование особенно существенно для ультралинейных схем включения оконечных ламп. Величины индуктивности рассеяния и емкости первичной обмотки не существенны. Вторичные обмотки при мощностях свыше 10Вт надо наматывать возможно более толстым проводом для уменьшения активных потерь. Желательно сделать несколько отводов, чтобы подобрать наилучший режим работы оконечного каскада. Подробнее этот вопрос рассмотрен в следующем параграфе. Высокочастотные оконечные каскады двухканальных Hi-Fi усилителей существенно отличаются от низкочастотных, поэтому и рекомендации относительно них будут другими. Прежде всего, это относится к типам ламп. [Поразительные рассуждения . Автор изобрёл собственную классификацию НЧ и ВЧ. Даже махровому дилетанту, причитавшему раздел про вакуумные лампы, прежде всего, очевидно то, что придуманное частотное разделение никакого отношения к вакуумным лампам не имеет вообще, их диапазон уходит в сотни мегагерц. Лампе 6П14П фиолетово, сигналы какой частоты усиливать, будь то 0,1кГц, 1кГц, 5кГц, 8 кГц, 16 кГц или 32кГц. А вот в отношении согласующего трансформатора этот вопрос уже актуален. Но и здесь беспокойств не нужно, т.к. до 18-20кГц годятся обычные трансформаторы, ничего наматывать вовсе не надо. А для частот выше 20кГц следует переходить на ферриты. Такое ощущение, что автор ничего не слышал про секционирование обмоток для улучшения АЧХ, и рекомендует толстый провод вторичной обмотки. А понятие АКТИВНЫЕ ПОТЕРИ - абсолютный собачий бред, поскольку пассивных потерь не бывает и реактивных потерь тоже нетю. Е.Б.]

Поскольку мощность высокочастотных каналов даже в усилителях экстра-класса лежит в пределах 10-12 вт, наиболее подходящими будут лампы 6П14П и 6Н13С. Наилучшие схемы включения - двухтактная ультралинейная, мостовая на 6П14П в триодном включении и "двухэтажная" на 6Н13С. Относительно последней схемы, наиболее часто встречающийся вариант которой, приведен на рис.6, можно сказать, что хотя она и не нова в теоретическом смысле, однако массовое распространение в радиовещательной аппаратуре получила только в 60-х годах прошлого века. Как это нередко бывает, схема стала очень распространенной, причем, говоря о достоинствах схемы, обычно умалчивали о ее недостатках. Попробуем объективно оценить и те и другие.

[Прежде всего, предлагаю здраво оценить самое важное последствие создания бестрансформаторных схем. Прошедшие 50 лет показали, что никакого распространения такие схемы не получили, да и не могли получить. С повышением уровня жизни ценность здоровья возрастает. Поэтому главный и непреодолимый недостаток бестрансформаторный схем – отсутствие гальванический развязки с источником высокого напряжения, никогда не позволит таким схемам достичь хоть какого-то распространения среди человеческого населения. А фантазёры пусть изучают и анализируют режимы такой схемотехники хоть до посинения.]

Рис.6. Одна из наиболее распространенных схем оконечного каскада с последовательным включением ламп по постоянному току

Последовательное включение двух ламп по постоянному току равносильно тому, что по переменному току обе они относительно нагрузки включены параллельно, в силу чего их общее внутреннее сопротивление фактически вчетверо меньше, чем у обычного двухтактного каскада. Если для такой схемы взять лампы, внутреннее сопротивление которых ниже обычного, а в качестве нагрузки использовать сравнительно высокоомные громкоговорители, то оказывается, что выходной трансформатор по расчету имел бы в этом случае коэффициент трансформации, близкий к единице или, во всяком случае, измеряемый единицами. Тогда оказывается возможным подключить нагрузку к лампам непосредственно, без выходного трансформатора. Это, разумеется, является безусловным достоинством схемы. Однако за это достоинство приходится дорого расплачиваться. Прежде всего, непосредственное включение нагрузки все-таки оказывается невозможным из-за наличия в точках ее включения, половины напряжения источника питания (120-150В). Поэтому громкоговорители приходится включать через разделительный конденсатор, емкость которого прямо связана с активным сопротивлением нагрузки и нижней границей полосы пропускания. Действительно, если допустимая потеря напряжения полезного сигнала на разделительном конденсаторе составляет 10% от величины самого сигнала, то при Rн=20Ом и fниж=40Гц реактивное сопротивление конденсатора не должно превышать 2 Ом, откуда его емкость равна

Ясно, что такую емкость может иметь только электролитический конденсатор, но при этом нужно помнить, что его рабочее напряжение должно быть по крайней мере не ниже полного напряжения источника питания, т.е. 300-350В. И тогда оказывается, что стоимость такого конденсатора ничуть не ниже стоимости выходного трансформатора, тем более, что трансформатор в отличие от конденсатора радиолюбитель в случае необходимости всегда может изготовить сам. Конечно, можно изготовить громкоговоритель с сопротивлением звуковой катушки не 20, а 200 Ом, что позволит при тех же условиях уменьшить емкость разделительного конденсатора до 200мкФ, однако в этом случае резко возрастает стоимость громкоговорителя. Впрочем, это не единственный недостаток данной схемы. Второй состоит в том, что при последовательном включении ламп по постоянному току к каждой из них оказывается приложена только половина напряжения анодного источника, поэтому схема может хорошо работать только на специальных лампах, номинальное анодное напряжение которых не превышает 100-150В. Однако большинство ламп подобного типа имеют незначительную максимальную отдаваемую мощность, редко превышающую единицы ватт. Кроме того, исследования показали, что при использовании пентодов эта схема принципиально несколько асимметрична, что делает ее мало пригодной для оконечных НЧ каскадов Hi-Fi усилителей. В высокочастотных каскадах первый недостаток сразу же отпадает, поскольку при выбранных в предыдущем расчете величинах и нижней границе ВЧ канала fниж=2кГц величина емкости разделительного конденсатора

причем в этом случае десятипроцентная потеря сигнала будет иметь место только в самой худшей, практически нерабочей части полосы пропускания, а на fверх=20кГц потери сигнала составят всего лишь 1%. Кроме того, требуемая выходная мощность для оконечного ВЧ каскада значительно меньше, чем для НЧ каскада, что позволяет использовать в этой схеме двойной триод 6Н13С, имеющий низкое внутреннее сопротивление и хорошо работающий при низких анодных напряжениях. Практическая схема такого каскада приведена на рис.7.

Рис.7. Практическая схема "двухэтажного" оконечного каскада на двойном триоде 6Н13С (6Н5С)

Если мощность ВЧ канала не превышает 2-3Вт, можно собрать оконечный каскад по схеме рис.8 на лампах типов 6Ф3П или 6Ф5П. Выходной трансформатор для этой схемы собирают на ленточном сердечнике при толщине ленты не более 0,2мм либо на Ш-образном пермаллое. Для того, чтобы ультралинейная схема дала ощутимый результат и нелинейные искажения действительно были порядка 0,2-0,5%, точку отвода первичной обмотки нужно в каждом случае подбирать опытным путем непосредственно по результатам измерений к.н.и. в процессе налаживания усилителя. Для этого при намотке трансформатора у каждой половины первичной обмотки нужно предусмотреть по 4-6 отводов.

Рис.8. Двухтактный высокочастотный оконечный каскад на лампах 6Ф3П или 6Ф5П (Рвых=2,5Вт)

Для транзисторных усилителей "двухэтажная" схема, напротив, оказывается предпочтительнее всех остальных. Это объясняется низкими величинами внутреннего сопротивления мощных транзисторов и коллекторного напряжения (по сравнению с лампами). Поэтому обеспечивается отличное согласование каскада с нагрузкой даже при использовании обычных низкоомных громкоговорителей, например, типа 4ГД-35. Кроме того, разделительный конденсатор оказывается небольших размеров даже при емкости 2000-5000мкФ, поскольку его рабочее напряжение не превышает 20-30В. Такие схемы широко распространены и радиолюбителям хорошо известны.

В качестве некоторого обобщающего заключения могу привести несколько соображений, которые в 21 веке будут наверняка восприняты как рациональные. Первое соображение – правильность обсуждения автором только двухтактных усилителей, поскольку однотактные схемы предназначены для начинающих. Второе – основательность подхода к систематизации схемотехники каскадов тоже заслуживает уважения. Третье – бесспорная квалификация автора в некоторых случаях граничит с поразительными предрассудками, а промахи в размышлизмах видимо есть следствие высокой теоретической подготовки и недостаточной практической опытности автора. Четвертое – прошедшие десятилетия существенно изменили расклад, как в основных понятиях, так и в схемотехнике, особенно в отношении выходных каскадов высокоэффективных усилителей. Да и церемонности чрезмерной сейчас уже нет. Многое стало проще и понятнее. Некоторые понты умерли не показав жизнестойкости. Но зато им на смену появилить новые понты, вроде бескислородной меди. Очень важным представляется необходимость осознания того факта, что изменение технологического уклада общества не должно изменять принципиальные жизненные ценности, например славянской цивилизации. По материалам из книги Гендина, скачанным в сети публикацию подготовил

Евгений Бортник, Красноярск, Россия, март 2018

Выходные каскады на базе " двоек "

В качестве источника сигнала будем использовать генератор переменного тока с перестраиваемым выходным сопротивлением (от 100 Ом до 10,1 кОм) с шагом 2 кОм (рис. 3). Таким образом, при испытаниях ВК при максимальном выходном сопротивлении генератора (10,1 кОм) мы в какой - то степени приблизим режим работы испытуемых ВК к схеме с разомкнутой ООС, а в другом (100 Ом) - к схеме с замкнутой ООС.

Основные типы составных биполярных транзисторов (БТ) показаны на рис. 4. Наиболее часто в ВК используется со ставной транзистор Дарлингтона (рис. 4 а) на базе двух транзисторов одной проводимости (" двойка " Дарлингтона), реже - составной транзистор Шиклаи (рис. 4б) из двух транзисторов разной проводимости с токовой отрицательной ОС, и еще реже - составной транзистор Брайстона (Bryston , рис. 4 в).
" Алмазный " транзистор - разновидность составного транзистора Шиклаи - показан на рис. 4 г. В отличие от транзистора Шиклаи, в этом транзисторе благодаря " токовому зеркалу " ток коллекторов обоих транзисторов VT 2 и VT 3 практически одинаков. Иногда транзистор Шиклаи используют с коэффициентом передачи больше 1 (рис. 4 д). В этом случае K П =1+ R 2/ R 1. Аналогичные схемы можно получить и на полевых транзисторах (ПТ).

1.1. Выходные каскады на базе " двоек ". " Двойка " - это двухтактный выходной каскад с транзисторами, включенными по схеме Дарлингтона, Шиклаи или их комбинации (квазикомлементарный каскад, Bryston и др.). Типовой двухтактный выходной каскад на " двойке " Дарлингтона показан на рис. 5. Если эмиттерные резисторы R3, R4 (рис. 10) входных транзисторов VT 1, VT 2 подключить к противоположным шинам питания, то эти транзисторы будут работать без отсечки тока, т. е. в режиме класса А.

Посмотрим, что даст спаривание выходных транзисторов для двойки " Дарлингт она (рис. 13).

На рис. 15 приведена схема ВК, использованная в одном из професс и ональных усилителей.


Менее популярна в ВК схема Шиклаи (рис. 18) . На первых порах развития схемотехники транзисторных УМЗЧ были популярны квазикомплементарные выходные каскады, когда верхнее плечо выполнялось по схеме Дарлингтона, а нижнее - по схеме Шиклаи. Однако в первоначальной версии входное сопротивление плеч ВК несимметрично, что приводит к дополнительным искажениям. Модифицированный вариант такого ВК с диодом Баксандалла, в качестве которого использован базо - эмиттерный переход транзистора VT 3, показан на рис. 20.

Кроме рассмотренных " двоек ", есть модификация ВК Bryston , в которой входные транзисторы эмиттерным током управляют транзисторами одной проводимости, а коллекторным током - транзисторами другой проводимости (рис. 22). Аналогичный каскад может быть реализован и на полевых транзисторах, например, Lateral MOSFET (рис. 24) .

Гибридный выходной каскад по схеме Шиклаи с полевыми транзисторами в качестве выходных показан на рис. 28 . Рассмотрим схему параллельного усилителя на полевых транзисторах (рис. 30).

В качестве эффективного способа повышения и стабилизации входного сопротивления " двойки " предлагается использовать на ее входе буфер, например, эмиттерный повторитель с генератором тока в цепи эмиттера (рис. 32).


Из рассмотренных " двоек " наихудшим по девиации фазы и полосе пропускания оказался ВК Шиклаи. Посмотрим, что может дать для такого каскада применение буфера. Если вместо одного буфера использовать два на транзисторах разной проводимости, включенных параллельно (рис. 35) , то можно ожидать дальнейшего улучшения пара метров и повышения входного сопротивления. Из всех рассмотренных двухкаскадных схем наилучшим образом по нелинейным искажениям показала себя схема Шиклаи с полевыми транзисторами. Посмотрим, что даст установка параллельного буфера на ее входе (рис. 37).

Параметры исследованных вы ходных каскадов сведены в табл. 1 .


Анализ таблицы позволяет сделать следующие выводы:
- любой ВК из " двоек " на БТ как нагрузка УН плохо подходит для работы в УМЗЧ высокой верности;
- характеристики ВК с ПТ на вы ходе мало зависят от сопротивления источника сигнала;
- буферный каскад на входе любой из " двоек " на БТ повышает входное сопротивление, снижает индуктивную составляющую выхода, расширяет полосу пропускания и делает параметры независимыми от выходного сопротивления источника сигнала;
- ВК Шиклаи с ПТ на выходе и параллельным буфером на входе (рис. 37) имеет самые высокие характеристики (минимальные искажения, максимальную полосу пропускания, нулевую девиацию фазы в звуковом диапазоне).

Выходные каскады на базе " троек "

В высококачественных УМЗЧ чаще используются трехкаскадные структуры: " тройки " Дарлингтона, Шиклаи с выходными транзисторами Дарлинг тона, Шиклаи с выходными транзис торами Bryston и другие комбинации. Одним из самых популярных вы ходных каскадов в настоящее вре мя является ВК на базе составно го транзис тора Дарлингтона из трех транзисторов (рис. 39). На рис. 41 показан ВК с разветвлением каскадов: входные повторители одновременно работают на два каскада, которые, в свою очередь, также работают на два каскада каждый, а третья ступень включена на общий выход. В результате, на выходе такого ВК работают счетверенные транзисторы.


Схема ВК, в которой в качестве выходных транзисторов использованы составные транзисторы Дарлингтона, изображена на рис. 43. Параметры ВК на рис.43 можно существенно улучшить, если включить на его входе хорошо зарекомендовавший себя с " двойками " параллельный буферный каскад (рис. 44).

Вариант ВК Шиклаи по схеме на рис. 4 г с применением составных транзисторов Bryston показан на рис. 46 . На рис. 48 показан вариан т ВК на транзисторах Шиклаи (рис.4 д) с коэффициентом передачи около 5, в котором входные транзисторы работают в классе А (цепи термоста билизации не показаны).

На рис. 51 показан ВК по структуре предыдущей схемы только с единичным коэффициентом передачи. Обзор будет неполным, если не остановиться на схеме выходного каскада с коррекцией нелинейности Хауксфорда (Hawksford), приведенной на рис. 53 . Транзисторы VT 5 и VT 6 - составные транзисторы Дарлингтона.

Заменим выходные транзисторы на полевые транзисторы типа Lateral (рис. 57


По вышению надежности усилите лей за счет исключения сквозных то ков, которые особенно опасны при кли пировании высокочастотных сиг налов, способствуют схемы антинасыщения выходных транзисторов. Варианты таких решений показаны на рис. 58. Через верхние диоды происходит сброс лишнего тока базы в коллектор транзистора при прибли жении к напряжению насы щен ия. На пряжение насыщения мощных транзисторов обычно находится в пределах 0,5...1,5 В, что примерно совпадает с падением напряжения на базо-эмиттерном переходе. В первом варианте (рис. 58 а) за счет дополнительного диода в цепи базы напряжение эмитте р - коллектор не доходит до напряжения насыщения пример но на 0,6 В (падение напряжения на диоде). Вторая схема (рис. 58б) требует подбора резисторов R 1 и R 2. Нижние диоды в схемах предназначены для быстрого выключения транзисторов при импульсных сигналах. Аналогичные решения применяются и в силовых ключах.

Часто для повышения качества в УМЗЧ делают раздельное питание, повышенное, на 10...15 В для входного каскада и усилителя на пряжения и пониженное для вы ходного каскада. В этом случае во избежание выхода из строя выходных транзисторов и снижения перегрузки предвыходных необходимо использовать защитные диоды. Рассмотрим этот вариант на примере модификации схемы на рис. 39. В случае повышения входного напряжения выше на пряжения питания выходных транзисторов открываются дополнительные диоды VD 1, VD 2 (рис. 59), и лишний ток базы транзисторов VT 1, VT 2 сбрасывается на шины питания оконечных транзисторов. При этом не допускается повышения входного на пряжения выше уровней питания для выходной ступени ВК и снижается ток коллектора транзисторов VT 1, VT 2.

Схемы смещения

Ранее, с целью упрощения, вместо схемы смещения в УМЗЧ использовался отдельный источник напряжения. Многие из рассмотренных схем, в частности, выходные каскады с параллельным повторителем на входе, не нуждаются в схемах смещения, что является их дополнительным достоинством. Теперь рассмотрим типовые схе мы смещения, которые представлены на рис. 60 , 61 .

Генераторы стабильного тока. В современных УМЗЧ широко используется ряд типовых схем: диф ференциальный каскад (ДК), отражатель тока (" токовое зеркало "), схема сдвига уровня, каскод (с последова тельным и параллельным питанием, последний также называют " лома ным каскодом "), генератор стабильного тока (ГСТ) и др. Их правильное применение позволяет значительно повысить технические характеристики УМЗЧ. Оценку параметров основных схем ГСТ (рис. 62 - 6 6) сделаем с помощью моделирования. Будем исходить из того, что ГСТ является нагрузкой УН и включенпараллельно ВК. Исследуем его свойства с помощью методики, аналогичной исследованиям ВК.

Отражатели тока

Рассмотренные схемы ГСТ - , это вариант динамической нагрузки для однотактного УН. В УМЗЧ с одним дифференциальным каскадом (ДК) для организации встречной динамической нагрузки в УН используют структуру " токового зеркала " или, как его еще называют, " отражателя тока " (ОТ). Эта структура УМЗЧ была характерна для усилителей Холтона, Хафлера и др. Основные схемы отражателей тока приведены на рис. 67 . Они могут быть как с единичным коэффициентом передачи (точнее, близким к 1), так и с большим или меньшим единицы (масштабные отражатели тока). В усилителе напряжения ток ОТ находится в пределах 3...20 мА: Поэтому испытаем все ОТ при токе, например, около 10 мА по схеме рис. 68.

Результаты испытаний приве дены в табл. 3 .

В качестве примера реального усилителя предлагается схема усилителя мощности S. BOCK , опубликованная в журнале Радиомир, 201 1 , № 1, с. 5 - 7; № 2, с. 5 - 7 Radiotechnika №№ 11, 12/06

Целью автора было построение усилителя мощности, пригодного как для озвучивания " пространства " во время прадничных мероприятий, так и для дискотек. Конечно, хотелось, чтобы он умещался в корпусе сравнительно небольших габаритов и легко транспортировался. Еще одно требование к нему - легкодоступность комплектующих. Стремясь достичь качества Hi - Fi , я выбрал комплементарно - симметричную схему выходного каскада. Максимальная выходная мощность усилителя была задана на уровне 300 Вт (на нагрузке 4 Ом). При таком мощности выходное напряжение составляет примерно 35 В. Следовательно для УМЗЧ необходимо двухполярное питающее напряжение в пределах 2x60 В. Схема усилителя приведена на рис. 1 . УМЗЧ имеет асимметричный вход. Входной каскад образуют два дифференциальных усилителя.

А. ПЕТРОВ, Радиомир, 201 1 , №№ 4 - 12

Самая суть для разбирающихся практиков

Усилитель собран по принципу «двойное моно», схема одного канала показана на рис.1 . Первый каскад на транзисторах VT1-VT4 – это усилитель напряжения с коэффициентом около 2,9 , второй каскад на VT5 – усилитель тока (эмиттерный повторитель). При входном напряжении 1 В выходная мощность около 0,5 Вт на нагрузке 16 Ом. Рабочий диапазон частот по уровню -1 dB примерно от 3 Гц до 250 кГц. Входное сопротивление усилителя – 6,5…7 кОм, выходное – 0,2 Ом.

Графики КНИ на частоте 1 кГц при выходной мощности 0,52 Вт и 0,15 Вт показаны на рис.2 и рис.3 (сигнал в звуковую карту подаётся через делитель «30:1»).

На рис.4 показан результат интермодуляционных искажений при измерении двумя тонами равного уровня (19 кГц и 20 кГц).

Усилитель собран в подходящем по размерам корпусе, взятом от другого усилителя. К цепям питания одного из каналов подключен блок управления вентиляторами (рис.5 ), контролирующий температуру одного из радиаторов выходных транзисторов (монтажная плата с навесным монтажом видна в центре на рисунке 6 ).

Оценка звучания на слух – «неплохо». Звук к колонкам не «привязан», панорама есть, но её «глубина» меньше, чем та, к которой привык. С чем это связанно, пока не выяснил, возможно (варианты с другими транзисторами, с изменением тока покоя выходных каскадов и поиском точек подключения входных/выходных «земель» были проверены).

Теперь для тех, кому интересно, немного об экспериментах

Эксперименты заняли достаточно долгое время и проводились немного хаотично – переходы с одного на другое делались по мере решения одних вопросов и появлению других, поэтому в схемах и измерениях могут быть заметны некоторые несовпадения. В схемах это отражается как нарушение нумерации элементов, а в измерениях - как изменение уровня шумов, наводок от сети 50 Гц, пульсаций 100 Гц и их продуктов (применялись разные блоки питания). Но в большинстве случаев замеры проводились несколько раз, поэтому неточности не должны быть особо значимыми.

Все эксперименты можно разбить на несколько. Первый был проведён для оценки принципиальной работоспособности TND каскада, следующие – для проверки таких характеристик, как нагрузочная способность, коэффициент усиления, зависимость линейности, работа с выходным каскадом.

Достаточно полную теоретическую информацию о работе TND каскада можно узнать из статей Г.Ф. Прищепова в журналах «Схемотехника» №9 2006 г. и «Радиохобби» №3 2010 г. (там примерно одинаковые тексты), поэтому здесь будет рассмотрено только его практическое применение.

Итак, первое – оценка принципиальной работоспособности

Сначала была собрана схема на транзисторах КТ315 с коэффициентом усиления около трёх (рис.7 ). При проверке оказалось, что с теми номиналами R3 и R4, что показаны на схеме, усилитель работает только с сигналами малого уровня, а при подаче 1 В происходит перегруз по входу (1 В – это уровень, который могут отдавать ПКД и звуковая карта компьютера, поэтому почти все измерения приведены к нему). На рисунке 8 на нижнем графике показан спектр выходного сигнала, на верхнем – входного и на нём видны искажения (КНИ должен быть около 0,002-0,006%). Глядя на графики и сравнивая уровни в каналах, надо учитывать, что выходной сигнал поступает в звуковую карту через делитель 10:1 (с входным сопротивлением около 30 кОм, резисторы R5 и R6 на рис.7 ) – ниже по тексту параметры делителя будут другими и об этом всегда будет указано).

Если считать, что появление искажений во входном сигнале говорит об изменении входного сопротивления каскада (что обычно вызвано неправильно выбранным режимом по постоянному току), то для работы с бОльшими входными сигналами следует увеличивать сопротивление R4 и, соответственно, для сохранения Кус равного трём, увеличивать R3.

После установки R3=3,3 кОм, R4=1,1 кОм, R1=90 кОм и повышения напряжения питания до 23В, удалось получить более-менее приемлемый значения КНИ (рис.9 ). Также выяснилось, что TND каскад «не любит» низкоомную нагрузку, т.е. чем больше будет сопротивление следующего каскада, тем меньше уровни гармоник и тем ближе к расчетному значению становится коэффициент усиления (ниже будет рассмотрен ещё один пример).

Затем усилитель был собран на печатной плате и к нему был подключен эмиттерный повторитель на составном транзисторе КТ829А (схема на рисунке 1 ). После установки транзистора и платы на радиатор (рис.10 ), усилитель был проверен при работе на нагрузку 8 Ом. На рисунке 11 видно, что сильно выросло значение КНИ, но это результат работы эмиттерного повторителя (сигнал со входа усилителя (верхний график) берётся в компьютер напрямую, а с выхода – через делитель 3:1 (нижний график)).

На рисунке12 показан график КНИ при входном сигнале 0,4 В:

После этого было проверено ещё два варианта повторителей – с составным транзистором из биполярных КТ602Б+КТ908А и с полевым IRF630A (ему потребовалось увеличение тока покоя за счёт установки на затворе +14,5В и уменьшения сопротивления R7 до 5 Ом при постоянном напряжении на нём 9,9 В (ток покоя около 1,98 А)). Лучшее, что получилось при входных напряжениях 1 В и 0,4 В, показано на рисунках 13 и 14 (КТ602Б+КТ908А), 15 и 16 (IRF630A):

После этих проверок схема вернулась к варианту с транзистором КТ829, был собран второй канал и после прослушки макета при питании от лабораторных источников, был собран усилитель, показанный на рисунке 6 . Два или три дня ушло на отслушивание и мелкие доработки, но на звуке и характеристиках усилителя это почти не отразилось.

Оценка нагрузочной способности

Так как желание проверить каскад TND на «грузоподъемность» ещё не пропало, был собран новый макет на 4-х транзисторах в цепочке (рис.17 ). Напряжение питания +19 В, делитель на выходе каскада 30 кОмный «10:1», входной сигнал – 0,5 В, выходной – 1,75 В (коэффициент усиления равен 3,5, но если делитель отключить, то выходное напряжение получается около 1,98 В, что говорит об Кус=3,96):

Подбирая сопротивление резистора R1, можно получить некоторый минимальный КНИ и этот график при нагрузке 30 кОм показан на рисунке 18 . Но если теперь последовательно резистору R5 установить ещё один такого же номинала (54 кОм), то гармоники получают вид, показанный на рисунке 19 – вторая гармоника вырастает примерно на 20 dB относительно основного тона и чтобы её вернуть к низкому значению, нужно опять изменить сопротивление R1. Это косвенно указывает на то, что для получения максимально стабильных значений КНИ питание каскада должно быть стабилизировано. Проверяется просто – изменение напряжения питания примерно также меняет вид гармоникового «хвоста».

Так, хорошо, это каскад работает с 0,5 В на входе. Теперь надо бы проверить его при 1 В и, допустим, с коэффициентом усиления «5».

Оценка коэффициента усиления

Каскад собран на транзисторах КТ315, напряжение питания +34,5 В (рис.20 ). Чтобы получить Кус=5, были поставлены резисторы R3 и R4 номиналами 8,38 кОм и 1,62 кОм. На нагрузке в виде резисторного делителя «10:1» с входным сопротивлением около 160 кОм выходное напряжение получилось около 4,6 В.

На рисунке 21 видно, что КНИ менее 0,016%. Большой уровень помехи 50 Гц и других кратных выше по частоте – это плохая фильтрация питания (работает на пределе).

К этому каскаду был подключен повторитель на КП303+КТ829 (рис.22 ) и затем сняты характеристики всего усилителя при работе на нагрузку 8 Ом (рис.23 ). Напряжение питания 26,9 В, коэффициент усиления около 4,5 (4,5 В переменки на выходе на нагрузке 8 Ом – это примерно 2,5 Вт). При настройке повторителя на минимальный уровень КНИ пришлось изменить напряжение смещения TND каскада, но так как уровень его искажений намного меньше, чем повторителя, то на слух это никак не отразилось – были собраны два канала и отслушаны в макетном варианте. Разницы в звучании с описанным выше полуваттным вариантом усилителя не замечено, но так как усиление нового варианта было избыточно, а тепла он выделяет больше, то схема была разобрана.

При регулировке напряжения смещения TND каскада можно найти такое положение, что гармониковый «хвост» имеет более ровный спад, но становится длинней и при этом уровень второй гармоники вырастает на 6-10 dB (общий КНИ становится около 0,8-0,9%).

При таком большом КНИ повторителя изменением номинала резистора R3 можно смело менять коэффициент усиления первого каскада как в большую, так и в меньшую сторону.

Проверка каскада с бОльшим током покоя

Схема была собрана на транзисторной сборке КТС613Б. Ток покоя каскада 3,6 мА - это самый большой из всех проверенных вариантов. Выходное напряжение на резисторном делителе 30 кОм получился 2,69В, КНИ при этом около 0,008% ((рис.25 ). Это примерно в три раза меньше, чем показано на рисунке 9 при проверке каскада на КТ315 (с таким же коэффициентом усиления и приблизительно с таким же напряжением питания). Но так как ещё одну такую же транзисторную сборку найти не удалось, второй канал не собирался и усилитель, соответственно, не слушался.

При увеличении сопротивления R5 в два раза и без подстройки напряжения смещения КНИ становится около 0,01% (рис.26 ). Можно сказать, что вид «хвоста» меняется незначительно.

Попытка оценки полосы рабочих частот

Сначала проверялся макет, собранный на транзисторной сборке. При использовании генератора ГЗ-118 с полосой выдаваемых частот от 5 Гц до 210 кГц «завалов на краях» не было обнаружено.

Затем проверялся уже собранный полуваттный усилитель. Он ослабил сигнал частотой 210 кГц примерно на 0,5 dB (при этом на 180 кГц изменений не было).

Нижнюю границу оценить было нечем, по крайней мере, не удалось увидеть разницу между входным и выходным сигналами при запуске свип-генератора программы , начиная с частот 5 Гц. Поэтому можно считать, что она ограничивается ёмкостью разделительного конденсатора С1, входным сопротивлением TND каскада, а также ёмкостью «выходного» конденсатора С7 и сопротивлением нагрузки усилителя – примерный расчет в программе показывает -1 dB на частоте 2,6 Гц и -3 dB на частоте 1,4 Гц (рис.27 ).

Так как входное сопротивление TND каскада достаточно низкое, то регулятор громкости следует выбирать не более 22...33 кОм.

Заменой выходного каскада может быть любой повторитель (усилитель тока), обладающий достаточно большим входным сопротивлением.

В приложении к тексту находятся файлы двух вариантов печатных плат в формате программы 5 версии (рисунок при изготовлении плат по надо «зеркалить»).

Послесловие

Спустя несколько дней увеличил питание каналов на 3 В, заменил 25-тивольтовые электролитические конденсаторы на 35-тивольтовые и подстроил напряжения смещения первых каскадов на минимум КНИ. Токи покоя выходных каскадов стали около 1,27 А, значения КНИ и ИМД при 0,52 Вт выходной мощности уменьшились до 0,028% и 0,017% (рис.28 и 29 ). На графиках видно, что увеличились пульсации 50 Гц и 100 Гц, но на слух их не слышно.

Литература:
1. Г. Прищепов, «Линейные широкополосные TND-усилители и повторители», журнал «Схемотехника» №9, 2006 г.

Андрей Гольцов, r9o-11, г. Искитим

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Рисунок №1, детали на один канал
VT1...VT4 Биполярный транзистор

PMSS3904

4 В блокнот
VT5 Биполярный транзистор

КТ829А

1 В блокнот
VD1...VD4 Диод

КД2999В

4 В блокнот
R1 Резистор

91 кОм

1 smd 0805, точный номинал подбирать при настройке В блокнот
R2 Резистор

15 кОм

1 smd 0805 В блокнот
R3 Резистор

3.3 кОм

1 smd 0805 В блокнот
R4 Резистор

1.1 кОм

1 smd 0805 В блокнот
R5, R6 Резистор

22 Ом

2 smd 0805 В блокнот
R7 Резистор

12 Ом

1 набрать из ПЭВ-10 В блокнот
R8, R9 Резистор






2024 © kubanteplo.ru.