Оборудование для горизонтального бурения нефтяных скважин. Технология бурения горизонтальных скважин буровыми установками. Технология горизонтального бурения


Наклонно направленная скважина с углом искривления ствола 80 0 и выше называется горизонтальной (рисунок 62). Горизонтальная часть ствола вскрывает продуктивный пласт вдоль и остается необсаженной. Длина горизонтального участка равна одному долблению.

Рисунок 62. Горизонтальная скважина

По радиусам кривизны стволов различают 3 типа профиля горизонтальных скважин:

  • большой радиус (более 300м);
  • средний радиус (100-300м);
  • малый радиус (10-60м).

Горизонтальные с большим радиусом могут быть реализованы при кустовом способе бурения с большими отходами и при длине горизонтального участка в 1000м и более. При этом используется стандартная техника и технология наклонно направленного бурения, позволяющая получать интенсивность искривления до 2- 2.5 0 /10м.

Горизонтальные скважины со средним радиусом применяются при бурении как одиночных скважин, так и для восстановления продуктивности эксплуатационных скважин. При этом максимальная интенсивность 3-8 градуса на 10м проходки при длине горизонтального участка 450-900м. Скважины, выполняемые по среднему радиусу, наиболее экономичны, так как имеют меньшую длину ствола (по сравнению с длиной ствола скважины с большим радиусом), обеспечивает более точное попадание в заданную точку на поверхности продуктивного пласта, что весьма важно при наличии тонких нефтяных и газовых пластов.

Горизонтальные скважины с малым радиусом успешно используются при разбуривании месторождении, находящихся на поздней стадии эксплуатации, а также при бурении вторых стволов из ранее пробуренных скважин. Для этого вырезают окно, либо пользуются фрезерным участком обсадной колонны в 8-10м. В этих условиях насосное оборудование помещают в основном стволе, причём желательно, чтобы значение зенитного угла на участке его установки и выше не превышало 20 0 . Интенсивность искривления таких стволов может быть 1- 2 0 на 1 м при радиусах 10-30м, а длина горизонтального участка до 90-150м.

Если бурение по большому радиусу не требует специального оборудования, то проводка стволов со средним и коротким радиусом может быть осуществлена только с применением специальных бурильных труб и укороченных и коротких забойных двигателей, которые позволяют искривлять стволы с радиусом кривизны 25-50 м (вместо 250 м и более). Проектирование горизонтальной скважины начинают с определения протяженности, формы и направления горизонтального участка. Эти параметры зависят от степени неоднородности продуктивного пласта, его толщины, литологии, твердости и устойчивости, угла падения пласта, т.е. от геологической характеристики пласта.

В области добычи ценных энергетических ресурсов бурение горизонтальных нефтяных скважин занимает важное место: с помощью такой технологии становится возможным добыча нефти из труднодоступных мест, а также разработка сложных участков пород. Создаваемая в процессе бурения горизонтальная скважина имеет определенный угол отклонения от оси вертикального ствола, благодаря чему становится возможным выкачивать нефть наиболее быстрым и продуктивным образом.

Выполнение работ по бурению скважин должно проходить только после подготовительного этапа. К нему относится изучение грунта в месте бурения, получение разрешительной документации, которая является юридическим подтверждением законности нефтедобычи в данном месте.

Способы бурения скважин

Наклонные скважины в целом и горизонтальные в частности можно пробурить несколькими способами.

Основными методами считаются следующие технологии бурения:

  • Направленная работа.
  • Сервисное инсталляционное бурение.
  • Направленный процесс внутриразломного типа.

Стоит заметить, что второй метод обычно проводится вместе с прокладкой коммуникаций под землей, а третий способ чаще применяется в угольном пласте, поскольку в этом случае может потребоваться отведение газа.

Технологические особенности бурения

Ввиду падения эффективности работы старых скважин многие компании увеличивают объем производства посредством интенсивной разработки уже имеющихся и обнаруженных нефтяных залежей. Горизонтальное направленное бурение горизонтальных скважин – это весьма продуктивный способ прироста сырьевой добычи. Его суть заключается в расширении площади введения в ствол скважины продукта. В ходе горизонтального бурения образуются скважины с горизонтальными отрезками, которые становится возможным продолжить при наклонном бурении.

Бурение горизонтальных скважин имеет ряд особенностей, которые уравновешивают влияние такого способа на экологию


  • Бестраншейное строительство – один из технических методов, который позволяет вести работу возле высоковольтной линии электропередач, в жилищном массиве или около дорожной развязки.
  • Для сокращения временных затрат при бурении горизонтальных скважин оптимально использовать комплексное оборудование, поскольку при этом объем рабочей силы невелик, как и количество привлеченной к работе техники. Кроме того, в этом случае не нужно проводить действия по снижению уровня грунтовых вод, если они залегают слишком высоко.
  • Важную роль играет и финансовый вопрос: сокращение рабочего процесса ведет к уменьшению сметы, которая закладывается при планировании скважины. Использование высокотехнологичных устройств способствует минимизации затрат.
  • С общественной и экологической точки зрения подобные разработки полезных ископаемых не наносят ущерба или неудобств людям, которые постоянно проживают в районе нефтедобычи.

Применение способа горизонтального бурения

Подобный способ не только способствует увеличению количества добываемой нефти с уже эксплуатируемых месторождений. Он также позволяет с успехом разрабатывать участки, работа на которых при бурении обычной скважины считается непродуктивной и нерентабельной.

Подобный способ приносит успех в использовании в ряде случаев:

  • Неисправности бурового оборудования.
  • Месторождение нефти, расположенное в труднодоступной части для обычной технологии работы.
  • Добыча нефти, залегающей на дне крупного водоема (океан или море).

Поломки бура могут происходить из-за залегания особо твердых пластов на пути к месторождению. Также бур может заклинить на месте разработки, и извлечь из горной породы его уже невозможно. Чтобы продолжить разработку и одновременно обойти слишком прочный слой, можно применить бурение горизонтальной скважины под углом или параллельно.

В ряде случаев стандартное бурение скважины заменяется технологией горизонтальной прокладки из-за сложного рельефа, близкого расположения к водоему. Кроме того, такой метод дает возможность быстрее и легче достичь нужного слоя породы и выбрать наиболее комфортное место для извлечения нефти.

В случае, если нефть находится на океаническом или морском дне, горизонтальное бурение потребует минимальных затрат, в то время как стандартная технология требует установки морской платформы, что обойдется весьма недешево. Таким же образом можно устраивать подземные хранилища нефти.

Характерные факторы в процессе бурения

Горизонтальное направленное бурение для нефтедобычи сопровождается использованием инновационных технологий, которые дают возможность устроить скважину с большим углом отклонения от вертикального направления. Как правило, слои, которые содержат нефть, имеют горизонтальную структуру, и подобная технологическая особенность делает добычу такой нефти возможной. Горизонтальные скважины, в отличие от стандартных, отличаются большими показателями по производительности, если сравнивать результаты бурения в одной и той же области.

Проход делается в заранее определенном режиме в нужных слоях. Работа должна выполняться с соблюдением условий по функционированию установки, которая разрушает забой скважины.

Эффективность такого разрушения оценивается по следующим показателям:

  • Степень нагрузки на долото, которое имеет прямую связь с давлением по оси.
  • Количество оборотов при работе устройства.
  • Качество глинистого материала в каждом слое и его процент.
  • Метод применения устройства.

При учете всех особенностей, которые сопровождают бурение горизонтальной скважины, можно определить, какой метод будет оптимальным. Условия работы, как правило, соотносятся с методами бурения, и если придерживаться идеальных показателей в применении технологии, можно добиться наибольшего роста продуктивности прохода в процессе горизонтальной прокладки скважины.

Место бурения может располагаться на некотором расстоянии от слоя, в котором залегает нефть, и добыча будет иметь положительный результат. В то же время стандартный способ может сильно повредить окружающей среде с точки зрения экологии, и потому горизонтальные скважины не только имеют высокую производительность, но и не наносят урона природе и человеку.

Ключевое преимущество горизонтального направленного бурения заключается в сохранении баланса экосистем и отсутствии вреда ландшафтам, на которые не производится непосредственного влияния. Отрицательное влияние на условия жизни человека также стремится к минимуму, поэтому добычу нефти можно производить и около поселений и городов.

Подготовка к процессу

Процесс создания горизонтальной скважины для добычи нефтяного или газового продукта может проходить с использованием глубокого способа бурения и применением соответствующего оборудования. При этом сначала проводится оформление геолого-технического наряда и создание технической карты. Техрегламент контролирует этапы выполнения.

Ключевые этапы бурения горизонтальных скважин идут в следующем порядке:

  1. Сборка оборудования для работы.
  2. Операции по спуску или подъему автоматического оснащения.
  3. Ориентировочные бурильные работы.
  4. Создание раствора, регулировка его плотности и тяжести, а также обработка специальными веществами.
  5. Герметизация скважинного устья.
  6. Работы по глушению.
  7. Подготовка исследований готовых стволов по геофизическим параметрам.
  8. Подготовка ствола к спуску испытателя горной породы.
  9. Взрывание снарядов для отбора крена.
  10. Освоение готовой к приему скважины.
  11. Доставка буровых комплексов.

Каждое действие подготовительного этапа требует регулярной проверки раствора для скважины и поддержания его свойств на нужном уровне, при этом его анализы периодически обновляются. Устья стволов должны быть оснащены оборудованием, предотвращающим выброс нефтяного продукта, поскольку это позволит максимально уменьшить риск появления аварийных ситуаций в работе.

Техническое состояние устройств, которые применяются в работе, должно проверяться своевременно; для проверки исправности оборудования необходимо применять контрольно-измерительные устройства, рабочее состояние которых также должно быть проконтролировано, автоматика и предохранительные элементы.

Любые осложнения, которые появляются при бурении горизонтальной скважины, требуется устранить. После того, как подготовительный этап заканчивается, необходимо провести испытание горных пластов. Каждый процесс по бурению требует регулярного профилактического осмотра используемой техники, который проводится до и после работы.

Особенности управления в горизонтальном бурении скважин

Важным аспектом в работе является управление оборудованием в процессе бурения, поскольку сам бур находится на отдалении. Горизонтальная технология требует тщательного контроля во избежание плачевных последствий. В работе используется система локации, которая должна воплощать функцию контроля процессов. Система представляет собой специальный зонд, который находится в головке бура. Синхронизация действий зонда производится посредством специальной техники, и оператор регулирует эти действия, находясь на поверхности земли.

Среди прочих действий зонд будет отмечать, под каким углом производится бурение горизонтальных скважин в данный момент, а получаемые сведения отправляются на прибор, с помощью которого оператор производит управление системой. Специалист также отслеживает количество оборотов устройства, температурный режим головки бура. Чем более оперативно сведения будут поступать на пульт, тем выше вероятность, что опасные ситуации будут предусмотрены вовремя.

Процесс горизонтального бурения проводится с применением комплексных установок, и в их состав обычно включены следующие конструктивные части:

  • Рама.
  • Лафет.
  • Кузовная часть.
  • Ходовая система установки (она может быть на колесах или гусеницах).
  • Гидроустановка.
  • Энергостанция.
  • Пульт управления.
  • Дизельный мотор.
  • Система подачи штанг.

Классификация бурового комплексного оборудования может зависеть от предела протяжки, и этот показатель измеряется в тоннах. Также важную роль играет диаметр расширения, а также длина ствола: эти значения измеряются в максимальных пределах. Второстепенные данные служат для более полной характеристики качеств используемой в работе техники: это радиус изгиба штанговых колонн. Этот показатель позволяет узнать силу перемены траектории, которая может потребоваться при первичном бурении, а также затратами раствора для формирования стабильной горизонтальной скважины. Все эти показатели позволяют провести работу наиболее эффективно и безопасно.

Бурение необходимо применять при строительстве большого числа сооружений, оно применяется при постройке водопроводных систем и для добычи полезных ископаемых. Скважина представляет собой горную выработку цилиндрической формы.

Одним из видов скважин являются горизонтальные скважины, они необходимы в нефтедобыче и в тех случаях, когда скважину нужно проложить в населенной местности, к примеру, под дорогой.

Длина таких скважин намного больше их ширины, ее верхнюю часть называют устьем, а нижнюю - забоем. Стволом конструкции являются стены. Бурение горизонтальных скважин экологично и не наносит серьезного вреда экологии.

Обычно у этой конструкции прямой угол отклонения, но так как идеально прямых линий нет, и не может быть, то нужно бурить стволы по траектории, приближенной к оптимальной.

Преимущество этих скважин в том, что они позволяют получить намного больше нефти, чем вертикальные. Это более дорогое, но продуктивное бурение. Горизонтальная скважина обычно является добывающей, но может быть нагнетательной.

Бурение горизонтальных скважин

При бурении горизонтальной скважины, важно правильно определить нужное количество колонн и глубину установки «башмаков», для этого нужно знать точное количество зон, где невозможно провести ствол по причине неустойчивости пород.

Перед приоткрытием продуктивных и производительных горизонтов, предусмотрите спуск одной колонны, чтобы не было разрыва пород.

  • Различие между диаметром колонн и скважин нужно подбирать, учитывая значения, определенные практикой бурения, чтобы спуск колонны был легким и обеспечивалось прочное и качественное цементирование. Когда принимается решение о том, что бурим скважину важно знать эти нюансы.
  • Перед началом бурения нужно провести анализ проб грунта, чтобы определить, возможно ли бурение в данном месте. От свойств грунта зависит глубина залегания труб. На основании анализа необходимо получить все нужные разрешения для работы.
  • Далее нужно сделать пилотную скважину. Пилотная скважина это обычный пробный прокол. Для ее бурения требуется небольшая буровая головка, соединенная со специальной штангой. С ее помощью можно контролировать и корректировать прокладку траншеи.
  • Штанга — это длинная труба, одна ее секция может достигать 3 м. Для такого бурения требуются головки только с алмазным напылением.
  • В саму головку должен быть встроен особый передатчик, сигналы которого поступали бы на приемное устройство, если техника собьется с маршрута, это будет отражено на дисплее и все ошибки можно легко устранить.

Для расширения скважины нужно использовать специальный расширитель, он протягивается в обратном направлении, он необходим, чтобы срезать лишние слои грунта. Для того чтобы в скважину можно было легко вводить трубы, ее диаметр должен быть на 40% больше ширины трубы.

После окончания бурения скважины, в нее нужно проложить трубы. Расширитель притягивается с конца скважины, а к нему присоединяется захват для трубы.

Очень важно и правильно обустройство скважины, в них обычно используются полимерные трубы, они долговечны и сохраняют физическую и химическую стабильность.

Если вы пробурили скважину для прокладки коммуникаций, по которым будет течь горячая жидкость, либо химически агрессивные составы, лучше использовать металлические трубы, так как пластики начнут крошиться, разрушаться и не выдержат нагрузку.

После окончания работ нужно подготовить всю необходимую документацию и сдать объект на приемку.

Эту работу могут выполнять только квалифицированные инженеры, которые могут технически обосновать все произведенные мероприятия, коммуникации должны быть точно привязаны к местности, точно так, как это указано в документах.

С экономической точки зрения, горизонтальные скважины весьма выгодны, для их бурения не требуется много персонала, поэтому можно сэкономить на зарплате. Часто бурение может провести бригада, состоящая из 3 человек.

Этот метод позволит проложить трубу под оживленной магистралью буквально в течении нескольких часов, при этом не будет разрушено ее покрытие, также сократятся затраты на оборудование и инструменты, хотя существуют, конечно, и другие способы бурения скважин.

Если заранее позаботиться о согласительной документации, то можно заранее получить информацию об имеющихся под землей кабелях, то есть, не нужно будет ремонтировать поврежденные коммуникации.

Для бурения таких скважин, необходимо особое оборудование с высокими прочностными характеристиками, на рынке есть как российское, так и иностранное такое оборудование.

Что касается прочности, то российское оборудование превосходит зарубежные аналоги, кроме того, оно и дешевле. Оно отлично адаптировано под российские условия бурения. Для него проще приобретать запчасти и оно обеспечит весьма серьезную экономию.

Снижение темпов роста добычи нефти наблюдается во всем мире. Добывающие компании, стараясь не потерять драгоценные баррели черного золота, совершенствуют методы извлечения углеводородов из открытых залежей. Одним из передовых методов является бурение горизонтальных стволов скважин в продуктивных пластах, о котором мы поговорим в этой статье.

Наклонно-направленное бурение скважин на кустах предшествовало усовершенствованию методов ориентации бурильного инструмента в скважине. На смену телеметрического контроля с использованием кабеля пришли инновационные цифровые технологии, позволяющие в реальном времени контролировать и управлять заданным азимутом и зенитным углом скважины. Теперь стало возможным бурить углеводородную залежь горизонтально. Подсчитано, что затраты на бурение горизонтальных скважин превышают стоимость вертикальных в 2 раза, а иногда и больше. Зато производительность горизонтальных скважин в 3 и более раз выше, чем у вертикальных. Очевидно, что затраты окупаются уже в первые годы добычи.

Технология горизонтального бурения

Перед строительством скважины разрабатывается проектная документация, в которую входит геологическая, техническая и экономическая части проекта. Основным документом на бурение скважины является ГТН (геолого-технический наряд).

Бурение горизонтальной скважины выполняют в несколько этапов:

  • бурение вертикального ствола с креплением обсадной колонной (кондуктор)
  • бурение с набором кривизны (зенитный угол) и направления (азимут), крепление ствола технической колонной
  • бурение с набором кривизны, стабилизация угла, вход в продуктивный пласт под малым углом, проходка горизонтального участка, спуск эксплуатационной колонны или хвостовика.

Наиболее сложный этап – бурение с набором кривизны. Приходится работать с применением телеметрии и специальных отклонителей. Информация о положении бурильной колонны выводится на экран, где оператор видит реальное положение колонны в скважине, сравнивает с проектным, передает бурильщику команды, корректируя направление.

При бурении технической колонны важно набрать необходимый зенитный угол и азимут. После крепления технической обсадной колонны начинается ответственный участок продолжения набора кривизны и стабилизации угла, чтобы ствол скважины перед заходом в продуктивный пласт имел угол близкий к 80 градусам, а в пласте двигался горизонтально.

Современные методы бурения используют забойные двигатели и долота, которые могут изменять направление бурения с использованием промывочной жидкости. В таком случае инженер может ориентировать буровое долото компьютерной программой с использованием сигналов позиционирования для определения местоположения долота относительно нефтяного или газового пласта.

Протяженность горизонтальных участков постоянно растет и отклонение от вертикального ствола на 1000 м уже давно перекрыто, рекорд составляет более 11 000 м.

Преимущество горизонтального бурения очевидно: повышение нефтеотдачи пласта. Даже на давно разведанных и эксплуатируемых площадях применяют метод боковой перфорации вертикальных колонн с последующим бурением горизонтальных ответвлений в продуктивном пласте.

Горизонтальное бурение выполняют специальным, иногда импортным дорогостоящим оборудованием. Здесь нужна повышенная технологическая дисциплина, требующая высокого исполнительского мастерства. Это, скорее, сложность, чем недостаток. Именно поэтому многие нефтяные компании имеют свои образовательные центры, где их специалисты обучаются новым технологиям. При наличии высококлассных специалистов, конечно, такой проблемы нет. Например, в компании «Нафтагаз » порядка 70% скважин бурятся именно горизонтальным способом.

Время больших открытий месторождений углеводородов заканчивается, впереди перспектива разработки месторождений с применением горизонтального бурения и последующим ГРП (гидроразрывом пласта).

Horizontal wells: from bold experiment to traditional technology

Горизонтальное бурение набирает обороты. Все больше скважин бурится с горизонтальным окончанием, либо из вертикальных скважин режутся боковые стволы. Наклонно-направленные скважины используют при разработке морских месторождений с платформ или с берега, в регионах со сложными геологическими условиями, требующими протяженных по длине стволов горизонтальных скважин. Такие скважины имеют сложную пространственную архитектуру, что определяет необходимость применения инновационных технологий, оборудования и квалифицированных кадров. И хотя это требует больших финансовых, материальных расходов, в конечном итоге – значительно увеличивает площадь дренирования продуктивного пласта, что увеличивает дебиты, а значит, прибыли компаний. «Круглый стол» редакции, проведенный методом экспресс-опроса, посвящен этой актуальной проблематике.

The horizontal drilling are gaining momentum. More wells drilled with horizontal bottom or from vertical wells cut sidetracks. Directional inclined wells used in the development of offshore fields or platforms with the shore, in regions with complex geological conditions, requiring extended along the length of the trunks horizontal wells. These wells have a complex spatial architecture that determines the necessity of application of innovative technologies, equipment and qualified personnel. And although it requires considerable financial, material costs, and, ultimately, significantly increases the drainage area of the reservoir, which increases flow rates and, therefore, the profits of companies. «Round table» revision carried out by the method of an opinion poll devoted to this actual issue.

Если в 70 – 80-е годы горизонтальные скважины были редким эпизодом, смелым экспериментом, демонстрацией возможностей техники и технологий, то сейчас это – производственная необходимость и обычная практика бурения скважин. Об этом свидетель­ствует статистика. Так, по итогам первого квартала 2017 г. видно, что большинство нефтяных компаний все больше внимания уделяет горизонтальному бурению, объемы которого занимают более трети от общего метража проходки. Например, в компании ЛУКОЙЛ в общем объеме бурения горизонтальные скважины составляют 35 %, «Роснефти» – 36,9 %, «Газпром неф­ти» – 71 %, «Башнефти» – 76 %, компании «Ру­сс­Нефть» – 89,7 % от общего объема проходки!

КУЛЬЧИЦКИЙ Валерий Владимирович,

РГУ нефти и газа (НИУ) имени И.М. Губкина

Доктор технических наук, профессор. Исполнительный директор центрального правления Научно-технического общества нефтяников и газовиков имени академика И.М. Губкина, заместитель заведующего кафедрой бурения нефтяных и газовых скважин, директор НИИБТ РГУ нефти и газа им. И.М. Губкина.
Авторитетный в России специалист в сфере геонавигации и интеллектуальных скважинных систем. Эксперт по промышленной безопасности в нефтяной и газовой промышленности Федеральной службы по экологическому, технологическому и атомному надзору, член Европейской ассоциации геофизиков и инженеров ЕАГО. Награжден медалью «Автору научного открытия» им. П.Л. Капицы (2003) за развитие теоретических основ создания интеллектуальных скважин.

Назрела потребность обсудить со специалистами актуальные проблемы строительства наклонно-направленных, горизонтальных и многоствольных скважин.
Представляем мнение профессионалов по этой весьма актуальной теме.
В успешной проводке горизонтальных скважин немало слагаемых, пренебрежение любым из которых может осложнить или погубить процесс. Но все-таки самое главное в этой технологии – системы геонавигации, каротажа и телеметрии. И поэтому мы начали наш опрос именно с вопроса о качестве применяемого оборудования.

В.В. КУЛЬЧИЦКИЙ:

«Разработка первых отечественных бескабельных забойных телеметрических систем: ЗИС-4 как аналога MWD–системы и «Забой» как аналога LWD–системы (разработчик ВНИИГИС, г. Октябрьский) финансировалась Министерством геологии, но так и не были востребованы ни геологами, ни нефтяниками-буровиками. После неудачных государственных испытаний ЗИС-4 в 1984 г. на Самотлорском месторождении в буровой бригаде Героя Социалистического Труда Анатолия Дмитриевича Шакшина нефтяники отказались от «электронного надзирателя» наклонно-направленных скважин, субъективно управляемых «кончиком карандаша».

– Как качество оборудования сказывается на результатах горизонтального бурения?
В.В. КУЛЬЧИЦКИЙ, РГУ нефти и газа (НИУ) имени И.М. Губкина. Как федеральному эксперту Минобрнауки мне довольно часто приходится расследовать инциденты, произошедшие при геонавигации скважин сложной пространственной архитектуры. Могу заключить, что до сих пор «торчат уши» недофинансирования отечественного геонавигационного оборудования, особенно на стадии доводки до промышленных образцов и внедрения в 80 – 90 гг. прошлого столетия. Большая доля непроизводительного времени и аварий приходится именно на отечественные телесистемы.

Разработка первых отечественных бескабельных забойных телеметрических систем: ЗИС-4 как аналога MWD-системы и «Забой» как аналога LWD-системы (разработчик – ВНИИГИС, г. Октябрьский) финансировалась Министерством геологии, но так и не были востребованы ни геологами, ни нефтяниками-буровиками. После неудачных государственных испытаний ЗИС-4 в 1984 г. на Самотлорском месторождении в буровой бригаде Героя Социалистического Труда Анатолия Дмитриевича Шакшина нефтяники отказались от «электронного надзирателя наклонно-направленных скважин, субъективно управляемых кончиком карандаша». Об этом написано в книге: Кульчицкий В. В. Геокосмос (М.: ИЦ РГУНГ, 2013 г. 146 с.).

С.В. КОЛБИН, OАО «Сургутнефтегаз». Качество оборудования является одним из ключевых вопросов при горизонтальном бурении боковых стволов. Отказ любого элемента КНБК приводит к дополнительным затратам. Мы уже не один год работаем совместно с производителями над повышением стойкости долот, увеличением межремонтного периода ВЗД и наработки на отказ телеметрических систем с целью достижения сбалансированной по времени работы «триады» (долото + ВЗД + телесистема), стремясь к тому, чтобы не было неплановых СПО из-за отказов. Практически все оборудование перед отправкой в бригады подвергается тестированию, опрессовкам, обкаткам.
И.А. ЛЯГОВ, компания ООО «Перфобур». Качество является совокупностью основных потребительских свойств любой технической продукции и определяется довольно обширной номенклатурой показателей из различных групп: назначением, надежностью, технологичностью, эргономичностью и т.д.

Поэтому качество оборудования, используемого для строительства горизонтальных скважин, непосредственно сказывается на результатах работы.
Например, в компании ООО «Перфобур» все узлы проходят испытания на стенде, на котором отрабатываются режимы бурения различными долотами и винтовыми забойными двигателями, подбираются фрезы под обсадные колонны различной категории прочности, а также проводится запись траектории пробуренных в песчано-бетонных блоках каналов.

КОЛБИН Сергей Викторович,

ОАО «Сургутнефтегаз»

Сергей Викторович работает начальником Управления по капитальному ремонту скважин и повышению нефтеотдачи пластов открытого акционерного общества «Сургутнеф­тегаз».

М.В. РАКИТИН, компания ООО «ЛУКОЙЛ – Нижневолжскнефть». Вопросы, с учетом специфики нашей компании, я бы, наверное, немного подкорректировал. Ведь мы работаем на морских месторождениях, а бурение горизонтальных скважин на море принципиально отличается от бурения боковых стволов на суше. Поэтому логично добавить вопрос: «Почему бурение на море принципиально отличается от бурения на суше?»
Отвечу: основные причины этого:

С.В. КОЛБИН:

«Качество оборудования является одним из ключевых вопросов при горизонтальном бурении боковых стволов. Отказ любого элемента КНБК приводит к дополнительным затратам».

– повышенные требования к безопасности бурения, эксплуатации и ликвидации скважин на море;
– очень высокие финансовые затраты требуют максимального сокращения времени строительства, что невозможно без использования надежного и высокотехнологичного оборудования мирового уровня;

– на суше разведочных (вертикальных) скважин довольно много, поэтому геологическая и эксплуатационная модель весьма надежная. На море разведочных скважин мало, поэтому при строительстве эксплуатационных скважин дополнительно решается задача доразведки горизонтальными скважинами месторождения.
Мы ведем бурение на Севере Каспия, поэтому ответы на другие вопросы будут связаны с бурением на море.
Геонавигация на наших месторождениях осуществляется удаленно небольшим коллективом, в который входят: геонавигатор, интерпретатор ГИС (петрофизик), геомеханик и супервайзерская служба Закзазчика. Для геонавигации используются сейсмические данные, данные ГТИ и ГИС-бурения (MWD&LWD), по­ступающие в реальном времени при бурении.

А.В. МИХАЙЛОВ:

«Именно благодаря геомеханическому моделированию можно подобрать оптимальную плотность и рецептуру бурового раствора. Также с помощью специалистов Центра технических решений ННБ, совместно с инженерами растворного сервиса, подготавливаются все необходимые гидравлические расчеты с учетом КНБК и бурильного инструмента – для понимания ожидаемой эквивалентной циркуляционной плотности (ЭЦП), эффекта свабирования и поршневания, рассматриваются все риски как во время бурения, так и во время спуско-подъемных операций».

Оборудование ГИС-бурения (MWD&LWD) при бурении на море играет очень важную роль. Кроме получения стандартной информации для определения литологии, пористости и характера насыщения надеемся на дополнительные данные, поэтому на море все шире начинаем использовать специальные методы ГИС-бурения (MWD&LWD): ГДК с отбором проб, ЯМК.
А.В. МИХАЙЛОВ, компания Халлибуртон. Бурение скважин, в частности горизонтальных, всегда связано с большими перегрузками и вибрационным воздействием вследствие несовершенства качества ствола, больших пространственных интенсивностей, разниц диаметров внутрискважинного оборудования и бурильного инструмента. Нужно также учитывать факт влияния бурового раствора, больших давлений и температуры. Безусловно, к качеству оборудования ННБ и каротажа во время бурения (LWD) всегда предъявлялись высокие требования. Так как любой отказ данного оборудования всегда влечет за собой незапланированные смены КНБК и спуско-подъемные операции, что в целом влияет на срок строительства скважин, тем самым увеличивая затраты компаний-операторов.
Любое оборудование ННБ должно пройти определенный цикл проверок и тестов на стадии разработки. Оно подвергается всем возможным механическим тестам, таким, как проверка на изгиб, кручение; проходит испытания на вибрационном и гидравлическом стенде. После чего уже имеет право проходить полевые испытания. Только после полевых испытаний оборудование получает сертификат или паспорт, подтверждающие работо­способность в сложных горно-геологических условиях.

– Геонавигационные системы каких производителей вы используете? Чем они привлекают вас: ценой, простотой в эксплуатации и обслуживании, надежностью, рабочим ресурсом?
В.В. КУЛЬЧИЦКИЙ. Эра освоения Западной Сибири высокотехнологичной отечественной геонавигацией нефтяных скважин сложной пространственной архитектуры началась 15 июля 1990 г., когда на Самотлорском месторождении пробурили за 30 суток и ввели в эксплуатацию скважину с длиной горизонтального ствола 209 м в коридоре пласта AB1+2 («рябчик») трудноизвлекаемой нефти. Дебит в 2 – 7 раз превысил соседние скважины с вертикальным вскрытием пласта!!!
Немного теории для понимания сложности технологии.
Геонавигация – составная и определяющая часть геонавтики – является научным направлением, в рамках которого ставятся и решаются технологические, аппаратные и программные задачи управления траекторией ствола скважины во взаимосвязи с исследованием околоскважинного пространства и воздействием на него в процессе бурения. Об этом написано в книге: Кульчицкий В.В. Геонавигационные технологии проводки наклонно-направленных и горизонтальных скважин (М.: ВНИИОЭНГ, 2000. 351 с.).
Геонавигация – высокотехнологичный сегмент разработки «сланцевой» нефти. Для разработки нефтяных залежей стволами значительной протяженности и площади охвата нефтяного пласта требуются надежные интеллектуальные и кибернетизированные КНБК с ресурсом работы до 1000 часов, обеспечивая одним рейсом долота до 10000 м. К разработке многофункцио­нального интеллектуального забойного оборудования на основе бурильного инструмента со встроенным силовым кабелем и вентильного электробура приступило ООО «НОВОБУР» (г. Пермь), что революционизирует технику и технологию бурения горизонтальных и многозабойных скважин – основу бурно развивающейся геонавигации.

ЛЯГОВ Илья Александрович,

ООО «Перфобур»

Кандидат технических наук по специальности «Технология бурения и освоения скважин».
Закончил аспирантуру в «Национальном минерально-сырьевом университете «Горный» (г. Санкт-Петербург).
Выпускник кафедры Нефтегазопромыслового оборудования Уфимского государственного нефтяного Технического университета. Проходил обучение во Фрайбергской горной академии (Германия).
Специалист в области закачивания скважин, вторичного вскрытия ПЗП. В настоящее время занимает должность главного инженера в компании ООО «Перфобур», занимающейся разработкой новой технологии радиального бурения.

Сланцевая нефть – нефть, которая добывается из сланцевых залежей, образованных из растительных и животных остатков, находящихся в твердом или в жидком состоянии в низкопроницаемых породах (Tight Oil).
Нефтематеринские породы – непроницаемые в реальном времени осадочные породы, способные в определенных геологических условиях и времени (миллионы лет) выделять свободные углеводороды, образованные в процессе диа- и катагенетических преобразований заключенного в них рассеянного органического веще­ства, когда общепринятые технологии дают коэффициент извлечения нефти (КИН) – от 0 до 1 – 3 %.
Каждой сланцевой формации соответствует определенная зрелость органического вещества (ОВ) – (определенные термобарические условия, пребывание в определенной стадии мезокатагенеза  – «окне нефтегазогенерации»). Необходимо создать в горном пространстве условия, при которых из керогена нефтематеринской породы генерируются подвижные углеводороды. Выявление закономерностей осадконакопления отложений баженовской свиты (БВ) определяет стратегию геонавигации скважин и пространственную архитектуру многозабойных наклонно-направленных и горизонтальных стволов. Зависимость фильтрационно-емкостных свойств горных пород от текстурно-структурных особенностей, сложившихся в процессе осадконакоплений, и постседиментационных преобразований исходных горных пород определяет тактику геонавигации многозабойных скважин.

Пример геореактора показывает тренд развития геонавигации в мире в целом и в России в частности. Это высокотехнологичное инновационное освоение подземного пространства (геокосмоса) стволами скважин значительной протяженности и площади охвата. Протяженность ствола скважины, а не глубина стала параметром мировых рекордов при освоении недр! Недра – то есть геокосмос наряду с подводным, воздушным и безвоздушным является четвертым видом пространства – подземным, в котором все активнее осуществляется деятельность человека, что, несомненно, приводит к изменению структур производства и потребления. Значительное сопротивление горных пород передвижению машин и механизмов, наличие больших давлений и температур предъявляют специфические требования к техническим средствам и технологиям, способным обеспечить активную деятельность человека в подземном пространстве.
С.В. КОЛБИН. Мы работаем с телеметрическими системами различных типоразмеров с гидравлическим, кабельным и электромагнитным каналами связи, а также с комбинацией двух последних, в зависимости от решаемых задач, например: какая промывочная жидкость применяется, биополимерный раствор, или, если работы производятся на депрессии, аэрированная азотом нефть. Комбинированный канал передачи данных уникален, разработан производителем по нашему техническому заданию.
И.А. ЛЯГОВ. В своей Технической Системе (ТС) «Перфобур» мы планируем использовать автономную (а в перспективе – оборудованную on-line каналом связи) телесистему отечественного производства, выпускаемую компанией АО «СКБ «ПН».

РЕДАКЦИЯ:

«В связи с тем, что общий фонд скважин в России вступает в период падающей добычи, необходимость будет подталкивать к масштабной разработке баженовской свиты, территория которой распространяется в Западной Сибири на площади около 1 млн км 2 с огромными запасами – до 140 млрд тонн нефти».

Сегодня ведется запись траектории каналов, пробуренных на нашем оборудовании с использованием ТС «Перфобур». Это позволяет многократно входить в уже пробуренный канал для исследований, интенсификации и в дальнейшем – для его капитального ремонта.
АО «СКБ «ПН» (г. Санкт-Петербург) заинтересовал нас тем, что специалисты данного поставщика первыми откликнулись на предложение по разработке малогабаритного автономного феррозондового инклинометра (диаметром 36 мм и длиной менее метра – в герметичном корпусе), способного работать в каналах с радиусом кривизны менее 7 метров.
М.В. РАКИТИН. В нашей практике бурения на море используется оборудование ГИС-бурения (MWD&LWD) компании Schlumberger.
А.В. МИХАЙЛОВ. Сперри Дриллинг Сервисез как департамент наклонно-направленного бурения сервисной компании Халлибуртон имеет геонавигционные системы собственного производства. В частности мы обладаем высокотехнологичным прибором ADR – азимутальным датчиком глубокого измерения удельного сопротивления. Он является прекрасным решением для оптимизации проводки траектории ствола скважины, максимального повышения добычи и продления срока эксплуатации скважины.
Прибор ADR сочетает в себе датчик направленного бурения глубокого проникновения с традиционным мультичастотным компенсированным датчиком удельного сопротивления. Глубокие измерения (до 6 метров), имиджи с высоким разрешением позволяют получать ранние предупреждения от приближения к границам пласта до выхода из продуктивной зоны, позволяя сохранять положение скважины в наиболее продуктивной части пласта.
Как и все приборы компании Халлибуртон, ADR имеет большую надежность и специальный дизайн, разработанный для бурения горизонтальных скважин различной сложности.

– Какие компоновки низа бурильной колонны при строительстве горизонтальных скважин, зарезке боковых стволов вы применяете?
С.В. КОЛБИН. Кроме упомянутых выше телесистем при проводке боковых стволов применяем ВЗД (в габаритах от 73 до 127 мм) и долота диаметром от 85 до 142,9 мм, как отечественных, так и зарубежных производителей. Использование РУС широкого распространения не получило, поскольку боковые стволы проводятся, в основном, на разбуренных, «старых» месторождениях.

И.А. ЛЯГОВ:

«В настоящее время в России существуют технологии для строительства многоствольных скважин, способные конкурировать с компаниями «Большой четверки».

И.А. ЛЯГОВ. В составе компоновки низа бурильной колонны ТС «Перфобур» мы используем специальные малогабаритные винтовые забойные двигатели с одним или двумя углами перекоса, устройство регулирования осевой нагрузки, способное работать как в режиме демпфера, так и асциллятора, долота типа PDC малого диаметра (58 – 60 мм), а также центраторы, места установки и диаметры которых подбираются в зависимости от требуемых параметров траектории каналов. В компоновку может быть включен автономный инклинометр.
М.В. РАКИТИН. Используются ВЗД, долота и РУС компании Schlumberger. Модули аппаратуры ГИС-бурения (MWD&LWD) входят в компоновку (КНБК) и используются на всех этапах строительства эксплуатационной скважины.

А.В. МИХАЙЛОВ. Специалистами Центра технических решений наклонно-направленного бурения (Solution Engineering) нашей компании КНБК проектируется и подбирается индивидуально для каждой горизонтальной скважины. Это делается для того, чтобы максимально удешевить стоимость компоновки, но при этом полностью решить поставленные Заказчиком задачи. Во время проектирования дизайна КНБК учитываются такие основные аспекты, как максимальная пространственная интенсивность скважины, ее отход от устья, протяженность горизонтального участка, возможная извилистость и кавернозность. На первой стадии производятся расчеты механических нагрузок на КНБК и бурильный инструмент – для понимания возможности образования искривления в колонне, что дает понимание о возможности наклонно-направленного бурения. На основании такого анализа делается вывод о целесообразности использования РУС в КНБК.

РАКИТИН Михаил Владиславович,

ООО «ЛУКОЙЛ-Нижневолжскнефть»

Михаил Владиславович более 35 лет работает в каротаже. Выпускник Московского государственного университета им. М.В. Ломоносова. Имеет опыт работы полевым инженером на российском и зарубежном оборудовании. Обрабатывал и интерпретировал данные ГИС, ПГИ и ГДИ на территориях Каспийской впадины, Западной Сибири и Тимано-Печорской газонефтяной провинции. В 2006 г. защитил кандидатскую диссертацию Усовершенствование интерпретации данных импульсного нейтронного каротажа с аппаратурой PDK-100 в условиях терригенного разреза Западной Сибири».
С 2010 г. и по настоящее работает ведущим геофизиком отдела мониторинга разработки нефтяных и газовых месторождений и повышения нефтеотдачи пластов. Участвует в планировании, мониторинге и оценке достоверности данных ГТИ, ГИС-кабель, ГИС-бурения (MWD&LWD) строящихся эксплуатационных и разведочных скважин. Кроме этого работает с материалами ПГИ горизонтальных скважин, оптоволоконных систем и трассерных исследований.

Отдельно ставятся задачи по геофизическим и петрофизическим измерениям во время бурения. В данный момент минимальный набор LWD-приборов включает в себя гамма-каротаж и каротаж УЭС, которые в большинстве случаях позволяют решать задачи геонавигации и получать минимальный набор геофизичесих данных.
Большинство компаний-операторов стараются заменить ГИС на кабеле оборудованием LWD, которое не уступает по качеству данных и в некоторых случаях показывает более реальную картину. Поэтому сейчас распространены такие методы, как акустический каротаж, гамма-гамма плотностной и нейтронный каротажи, боковой каротаж.

– Системы MWD/LWD требуют высокой квалификации пользователей. Где и как учатся, проходят тренинги буровики, способные с ювелирной точностью проводить стволы в определенную геологами точку или провести протяженный ствол по продуктивному пласту, особенно если он маломощный?
С.В. КОЛБИН. Обучение инженеров, ремонтирующих и эксплуатирующих телесистемы, на начальном этапе проводилось в учебных центрах производителей оборудования. Сейчас, в основном, обучение проводится на рабочих местах, в телеметрических партиях и лаборатории по ремонту телесистем силами ведущих специалистов инженерно-телеметрической службы. Квалификацию наших специалистов можно оценить как очень высокую.

М.В. РАКИТИН:

«На море, к сожалению, мы существенно отстаем. Наиболее слабо в области ГИС-бурения (MWD&LWD) мирового уровня закрыты секции, которые бурятся долотами 311 мм и более. Кроме ГК, ЭК и инклинометрии здесь практически ничего нет. Поэтому большинство работает с ГИС-кабелем. Здесь именно Россия может сделать прорыв, так как требуются нестандратные подходы».

И.А. ЛЯГОВ. Специалисты компании ООО «Перфобур» используют методики ВНИИБТ, УГНТУ, БашНИПИнефть, ТатНИПИнефть для получения аналитических зависимостей, устанавливающих закономерности геометрических параметров малогабаритных компоновок Технической Системы «Перфобур» с кривизной канала, на основании которой строятся профили каналов с различными радиусами кривизны для бурения сети разветвленных каналов в маломощных пластах.
М.В. РАКИТИН. Системы ГИС-бурения (MWD&LWD) для решения задач геонавигации требуют высокой квалификации пользователей. С аппаратурой ГИС-бурения (MWD&LWD) для получения всей необходимой информации работают специалисты компании Schlumberger. Контроль входной информации и геонавигация с изменением траектории в реальном времени осуществляется под руководством специалистов Заказчика. Насколько мне известно, специалистов-геонавигаторов у нас пока не готовят.

А.В. МИХАЙЛОВ. В нашей компании существует большое количество курсов для повышения квалификации, как с инструкторами в учебных центрах США и России, так и онлайн, которые можно пройти в свободное время из любой точки мира, имея только Интернет. Данные курсы являются обязательным требованием для развития персонала в компании. Еще один эффективный способ повысить квалификацию – обмен опытом на проектах других локаций компании. Это позволяет увидеть новые грани и особенности работы сервисных компаний на других континентах, с разным менталитетом и подходом к  работе. Такой опыт позволяет привнести что-то новаторское на российских проектах.
Халлибуртон уделяет большое внимание обучению и повышению квалификации своих сотрудников, так как понимает, что любая ошибка и непрофессионализм могут вылиться для Заказчика в непроизводительное время (НПВ), отказ оборудования ННБ или MWD/LWD, недостижение геологических целей Заказчика.

В связи с тем, что общий фонд скважин в России вступает в период падающей добычи, необходимость будет подталкивать к масштабной разработке баженовской свиты, территория которой распространяется в Западной Сибири на площади около 1 млн км 2 с огромными запасами – до 140 млрд тонн нефти. Поскольку баженовская свита отличается низкой проницаемостью коллекторов, то и разбуривать ее необходимо горизонтальными скважинами с последующим гидроразрывом пластов (опыт США, Канады и других стран).

С.В. КОЛБИН:

«Целесообразность бурения горизонтальных боковых стволов определяется как ожидаемым приростом дебитов скважин, возможностью увеличения КИН пласта и месторождения, так и окупаемостью вложений. На месторождениях Восточной Сибири, в условиях низких пластовых давлений, при бурении на депрессии с использованием в качестве промывочной жидкости аэрированной азотом нефти, мы проводим из каждой скважины по два горизонтальных участка длиной по 500 метров, что позволило значительно увеличить дебиты».

– Готовы ли мы, на ваш взгляд, технически и технологически к освоению этих природных богатств, особенно в условиях санкций?
В.В. КУЛЬЧИЦКИЙ. Керогенносодержащая порода баженовской свиты является неколлектором, ее основу слагают силициты, перемеживающиеся с пропластками глин. Напряженное состояние массива пород подтверждается выпучиванием и растрескиванием кернового материала. Следовательно, техногенным воздействием возможно освобождать энергию горной породы и запускать механизм трещинообразования в околоскважинном пространстве направленной разгрузкой пласта (НРП) в сочетании с ГРП в горизонтальных скважинах с большой площадью охвата искусственно созданной в породе разветвленной си­стемой трещин, которая и будет выполнять функции коллектора в БС. Структура предмета воздействия как единичного микропространства – сложная и методы воздействия на него должны быть многообразными, в т. ч. и с геонавигационными технологиями, обеспечивающими охват залежи боковыми стволами сообразно законам ее формирования. При многообразии вторичных методов воздействия (термические, химические, физические) главным является максимальное приближение и позиционирование траектории ствола скважины с учетом структурно-текстурных характеристик отложений БС.
Эффективное извлечение нефти в промышленном масштабе из нефтематеринских горных пород БС, обладающх большими геологическими запасами, представляется невозможным без применения геонавигационных технологий строительства скважин сложной пространственной архитектуры в сочетании с термическими методами.
Идея разработки технологий, ускоряющих процессы выделения ОВ в нефть, заключается в создании соответствующих термодинамических условий посредством скважинного сооружения сложной пространственной архитектуры – подземного реактора.
Авторским коллективом (Кульчицкий В.В., Щебетов А.В., Гутман И.C., Фомкин А.В., Боксерман А.А., Саакян М.И.) создан способ разработки многопластовой неоднородной залежи баженовской свиты с целью повышения нефтеотдачи залежи за счет ввода в разработку пропластков-неколлекторов нефтематеринской толщи БС [Способ разработки многопластового неоднородного нефтяного месторождения. Патент на изобретение RU № 2567918 от 02.12.2014]. На примере запатентованной скважины-геореактора показано, что эффективное извлечение нефти в промышленных масштабах из нефтематеринских отложений БС организацией на большой площади охвата процесса пиролиза без геонавигационных технологий строительства скважин сложной пространственной архитектуры представляется невозможным. Геореактор – природно-техногенное сооружение для термического освобождения нефти из автохтонных углеводородов, генетически связанных с исходным органическим веществом и находящихся в запечатанных порах нефтематеринских горных пород, образованных при переходе части твердой органики в жидкую.

МИХАЙЛОВ Александр Владимирович,

компания Халлибуртон

Александр Михайлов является руководителем службы технических решений (Solution Engineering) подразделения по наклонно-направленному бурению Sperry Drilling компании Халлибуртон в России с 2015 г. В данную службу входят такие направления, как оптимизация ННБ, геонавигация, интерпретация данных LWD, сервис корректировки замеров.
Александр – выпускник Российского Геологоразведочного университета им. С. Орджоникидзе по специальности «Геофизические исследования скважин». Свою профессиональную карьеру в нефтегазовом сервисе начал как инженер-телеметрист в 2008 г., потом работал как инженер ННБ и ведущий специалист технической поддержки ННБ.


С.В. КОЛБИН. Баженовские отложения – перспективная ресурсная база ОАО «Сургутнефтегаз». Опыт проводки боковых стволов в бажене у нас есть. Другое дело, как и где бурить эти стволы, какой способ вызова притока применять. Тут необходима совместная работа с геологами, практическая апробация теоретических представлений.
И.А. ЛЯГОВ. В настоящее время в России существуют технологии для строительства многоствольных скважин, способные конкурировать с компаниями «Большой четверки».
А.В. МИХАЙЛОВ. Баженовская свита до сих пор полностью не исследована. Не существует определенных подходов и технологий для ее разработки. Это подтверждают большинство компаний-оперататоров. На данный момент запасы баженовской свиты нерентабельны в условиях существующих как российских, так и иностранных технологий. Нельзя провести полную аналогию между нетрадиционными запасами России и США либо Канады, поэтому не все технологии североамериканских компаний подходят под наши условия.

– Насколько импортозамещение обеспечивает потребности российского рынка в геонавигационном оборудовании, станциях каротажа, роторно-управляемых системах, системах верхнего привода и т.д.?
В.В. КУЛЬЧИЦКИЙ. Создание геонавигационных технологий, которые обеспечат Россию углеводородным сырьем на сотни лет, всегда экономически оправдано.
Проблема на пути развития геонавтики, как научно-промышленной основы геонавигации, связана с высокими технологиями, создаваемыми на основе фундаментальных исследований и открытий. Прерванная вековая связь академической науки с отраслевой нанесла непоправимый ущерб отраслевым институтам, которые всегда были мостом, соединяющим промышленность, академическую и вузовскую науку. В России полностью погибли десятки отраслевых нефтегазовых НИИ, а численность оставшихся сократилась многократно, раздробившись на тысячи малых предприятий. Утрачены экспериментальные заводы и установки, деградировали научно-лабораторные базы и КБ. Академические институты в попытке решения финансовых проблем растратили четверть века на бесперспективную интеграцию с нефтегазокорпорациями, минуя отраслевые институты. «Мосты» между академической наукой и промышленностью – государственные отраслевые институты – сожжены. Системная связь институтов РАН с нефтегазодобывающей отраслью заменена околонаучной деятельностью частных центров и НИИ неф­тегазовых корпораций, где административная власть управляет научными подразделениями. Без восстановления системы отраслевых институтов как проводников академической науки в нефтегазовую практику невозможно реализовать призыв В.В. Путина на Совете при Президенте РФ по науке и образованию 21.01.2016 г.: «…Наличие собственных передовых технологий – это ключевой фактор суверенитета и безопасности государства, конкурентоспособности отечественных компаний, важное условие роста экономики и повышения качества жизни наших граждан…» (цитата по еженедельной газете научного сообщества МГТУ им. Н.Э. Баумана «Поиск», № 18 – 19 от 13.05.2016).

И.А. ЛЯГОВ:

«Экономическая эффективность строительства скважины зависит от качества гидродинамической связи продуктивного пласта с пробуренной скважиной. Если рассматривать бурение на новом месторождении, то горизонтальный канал (конечно, оптимальной длины) позволяет построить скважину с более эффективной площадью фильтрации, а следовательно, и добыть больше нефти с меньшими эксплуатационными затратами, но с большими затратами на бурение, связанными с необходимостью использования дорогостоящего современного (инновационного) оборудования».

С.В. КОЛБИН. В основном, мы используем отечественные клинья-отклонители, фрезеры, долота, винтовые забойные двигатели, верхние силовые приводы, оборудование для заканчивания скважин.
И.А. ЛЯГОВ. В последние годы, в связи с потребно­стью импортозамещения, ряд ведущих российских компаний занимаются разработкой роторно-управляемых систем, современных инклинометрических телесистем радиального бурения. Одной из таких компаний является АО «СКБ «ПН», специалисты которой успешно справляются с потребностями рынка в качественном оборудовании.
М.В. РАКИТИН. На море, к сожалению, мы существенно отстаем. Наиболее слабо в области ГИС-бурения (MWD&LWD) мирового уровня закрыты секции, которые бурятся долотами 311 мм и более. Кроме ГК, ЭК и инклинометрии здесь практически ничего нет. Поэтому большинство работает с ГИС-кабелем. Здесь именно Россия может сделать прорыв, так как требуются нестандратные подходы. Более подробно по этому вопросу можно прочитать в статье С.Ю. Штуня, М.В. Ракитина – «Можно ли обогнать зарубежные компании в области ГИС-бурения (MWD&LWD)?» в вашем специализированном журнале «Бурение и нефть» в № 10 (октябрь) 2016 г.
А.В. МИХАЙЛОВ. Насколько мне известно, несколько российских компаний и бюро уже продолжительное время ведут разработки высокотехнологичного оборудования ННБ и MWD/LWD в рамках программы импортозамещения. Однако уровень такого оборудования пока уступает иностранным аналогам как в плане надежности, так и в плане функционала. Поэтому на данный момент однозначно можно сказать, что отечественное оборудование не может охватить все потребности нефтегазовых компаний.
– Горизонтальные скважины, как правило, более подвержены обвалам и осыпям породы, поэтому требуют тщательного подбора рецептуры буровых растворов. Какие буровые растворы используете вы?
С.В. КОЛБИН. Для предупреждения осложнений при бурении боковых стволов мы применяем высокоингибированный хлоркалиевый биополимерный раствор, подбираем рецептуры в зависимости от состояния пласта, непосредственно в бригадах КРС круглосуточно контролируем до 15 параметров БПР.
И.А. ЛЯГОВ. Реологические свойства и технологические параметры промывочной жидкости, безусловно, имеют важное значение в процессе разрушения горной породы, работы ВЗД, фрез и долот. Для обеспечения достаточной выносящей способности технология разветвленно-направленного (радиального) бурения «Перфобур» использует специальные растворы, например, безглинистый биополимерный ингибированный буровой раствор рецептуры ООО «Перфобур».
М.В. РАКИТИН. Для бурения длинных горизонтальных стволов используются растворы на нефтяной основе.
А.В. МИХАЙЛОВ. Очевидно, что для снижения вероятности возникновения вышеупомянутых проблем необходим более глубокий и широкий анализ на стадии планирования скважин. А для того чтобы достичь наилучших результатов, необходим мультидисциплинарный подход к решению сложных технических задач. Геомеханическое моделирование является неотъемлемой частью такого подхода. Сейчас именно благодаря геомеханическому моделированию можно подобрать оптимальную плотность и рецептуру бурового раствора. Также с помощью специалистов Центра технических решений ННБ, совместно с инженерами растворного сервиса, подготавливаются все необходимые гидравлические расчеты с учетом КНБК и бурильного инструмента – для понимания ожидаемой эквивалентной циркуляционной плотности (ЭЦП), эффекта свабирования и поршневания, рассматриваются все риски как во время бурения, так и во время спуско-подъемных операций. Имея возможность получать данные по внутреннему и затрубному давлению во время бурения в реальном времени с датчиков LWD, можно корректировать параметры раствора своевременно, избегая катастрофических последствий.

– Всегда ли экономически оправдано бурение горизонтальных скважин? Насколько они дороже вертикальных и есть ли ощутимая разница между дебитами горизонтальных и вертикальных скважин при высокой проницаемости пласта?
С.В. КОЛБИН. Целесообразность бурения горизонтальных боковых стволов определяется как ожидаемым приростом дебитов скважин, возможностью увеличения КИН пласта и месторождения, так и окупаемостью вложений. На месторождениях Восточной Сибири, в условиях низких пластовых давлений, при бурении на депрессии с использованием в качестве промывочной жидкости аэрированной азотом нефти, мы проводим из каждой скважины по два горизонтальных участка длиной по 500 метров, что позволило значительно увеличить дебиты. Более того, при бурении зачастую получаем притоки нефти.
И.А. ЛЯГОВ. Экономическая эффективность строительства скважины зависит от качества гидродинамической связи продуктивного пласта с пробуренной скважиной. Если рассматривать бурение на новом ме­сторождении, то горизонтальный канал (конечно, оптимальной длины) позволяет построить скважину с более эффективной площадью фильтрации, а следовательно, и добыть больше нефти с меньшими эксплуатационными затратами, но с большими затратами на бурение, связанными с необходимостью использования дорогостоящего современного (инновационного) оборудования.
А если рассматривать скважины, находящиеся на поздней стадии эксплуатации, то, на наш взгляд, наиболее оптимальным является строительство сети разветвленных каналов малого диаметра и радиуса кривизны, позволяющее эффективно вскрывать пласты малой мощности и преодолевать загрязненные призабойные зоны пласта (ПЗП), образовавшиеся при его первичном вскрытии.
М.В. РАКИТИН. На море для эксплуатации бурятся практически только горизонтальные скважины. Уже в конце прошлого века стали использовать подводное устьевое оборудование горизонтальных скважин.
ГИС-бурение (MWD&LWD) все шире начинает использоваться и в разведочных скважинах на море.
А.В. МИХАЙЛОВ. Данный вопрос не первый год интересует все нефтегазовые компании. Существует много научных работ, доказывающих, что горизонтальные скважины окупаются быстрее вертикальных и наклонно-направленных, при том что стоимость горизонтальной скважины на 15 – 20 % дороже. Горизонтальные скважины предоставляют гораздо большие возможно­сти воздействия различными методами на пласты, чем вертикальные или наклонно-направленные.
Сегодня бурение на нефть и газ происходит в недосягаемых зонах, где порой невозможна отсыпка куста непосредственно над объектом разработки либо требует больших финансовых затрат – для строительства дополнительных дорог, обеспечения транспортного сообщения. В подобных условиях бурением вертикальных скважин просто невозможно попасть в геологические цели. И тогда горизонтальное бурение – единственно возможный способ добраться до продуктивных пластов.







2024 © kubanteplo.ru.