3 степенная функция ее свойства и график. Степенная функция, ее свойства и графики. Степенная функция с отрицательным показателем p


Функция где Х – переменная величина, A – заданное число, называется Степенной функцией .

Если то – линейная функция, ее график – прямая линия (см. параграф 4.3, рис. 4.7).

Если то – квадратичная функция, ее график – парабола (см. параграф 4.3, рис. 4.8).

Если то ее график – кубическая парабола (см. параграф 4.3, рис. 4.9).

Степенная функция

Это обратная функция для

1. Область определения:

2. Множество значений:

3. Четность и нечетность: функция нечетная.

4. Периодичность функции: непериодическая.

5. Нули функции: X = 0 – единственный нуль.

6. наибольшего и наименьшего значений функция не имеет.

7.

8. График функции Симметричен графику кубической параболы относительно прямой Y = X и изображен на рис. 5.1.

Степенная функция

1. Область определения:

2. Множество значений:

3. Четность и нечетность: функция четная.

4. Периодичность функции: непериодическая.

5. Нули функции: единственный нуль X = 0.

6. Наибольшее и наименьшее значения функции: принимает наименьшее значение для X = 0, оно равно 0.

7. Промежутки возрастания и убывания: функция является убывающей на промежутке и возрастающей на промежутке

8. График функции (для каждого N Î N ) «похож» на график квадратичной параболы (графики функций изображены на рис. 5.2).

Степенная функция

1. Область определения:

2. Множество значений:

3. Четность и нечетность: функция нечетная.

4. Периодичность функции: непериодическая.

5. Нули функции: X = 0 – единственный нуль.

6. Наибольшее и наименьшее значения:

7. Промежутки возрастания и убывания: функция является возрастающей на всей области определения.

8. График функции (для каждого ) «похож» на график кубической параболы (графики функций изображены на рис. 5.3).

Степенная функция

1. Область определения:

2. Множество значений:

3. Четность и нечетность: функция нечетная.

4. Периодичность функции: непериодическая.

5. Нули функции: нулей не имеет.

6. Наибольшее и наименьшее значения функции: наибольшего и наименьшего значений функция не имеет при любом

7. Промежутки возрастания и убывания: функция является убывающей в области определения.

8. Асимптоты: (ось Оу ) – вертикальная асимптота;

(ось Ох ) – горизонтальная асимптота.

9. График функции (для любого N ) «похож» на график гиперболы (графики функций изображены на рис. 5.4).

Степенная функция

1. Область определения:

2. Множество значений:

3. Четность и нечетность: функция четная.

4. Периодичность функции: непериодическая.

5. Наибольшее и наименьшее значения функции: наибольшего и наименьшего значений функция не имеет при любом

6. Промежутки возрастания и убывания: функция является возрастающей на и убывающей на

7. Асимптоты: X = 0 (ось Оу ) – вертикальная асимптота;

Y = 0 (ось Ох ) – горизонтальная асимптота.

8. Графиками функций Являются квадратичные гиперболы (рис. 5.5).

Степенная функция

1. Область определения:

2. Множество значений:

3. Четность и нечетность: функция не обладает свойством четности и нечетности.

4. Периодичность функции: непериодическая.

5. Нули функции: X = 0 – единственный нуль.

6. Наибольшее и наименьшее значения функции: наименьшее значение, равное 0, функция принимает в точке X = 0; наибольшего значения не имеет.

7. Промежутки возрастания и убывания: функция является возрастающей на всей области определения.

8. Каждая такая функция при определенном показателе является обратной для функции при условии

9. График функции «похож» на график функции при любом N и изображен на рис. 5.6.

Степенная функция

1. Область определения:

2. Множество значений:

3. Четность и нечетность: функция нечетная.

4. Периодичность функции: непериодическая.

5. Нули функции: X = 0 – единственный нуль.

6. Наибольшее и наименьшее значения функции: наибольшего и наименьшего значений функция не имеет при любом

7. Промежутки возрастания и убывания: функция является возрастающей на всей области определения.

8. График функции Изображен на рис. 5.7.

Лекция: Степенная функция с натуральным показателем, её график

Мы постоянно имеем дело с функциями, в которых аргумент имеет некоторую степень:
у = х 1 , у = х 2 , у = х 3 , у = х -1 и т.д.

Графики степенных функций

Итак, сейчас мы рассмотрим несколько возможных случаев степенной функции.

1) у = х 2 n .

Это означает, что сейчас мы будем рассматривать функции, в которых показатель степени является четным числом.

Характеристика функции:

1. В качестве области значения принимаются все действительные числа.

2. Функция может принимать все положительные значения и число нуль.

3. Функция является четной, поскольку не зависит от знака аргумента, а зависит только от его модуля.

4. Для положительного аргумента функция возрастает, а для отрицательного - убывает.

Графики данных функций напоминают параболу. Например, ниже представлен график функции у = х 4 .

2) Функция имеет нечетный показатель степени: у = х 2 n +1 .

1. Область определения функции - все множество действительных чисел.

2. Область значения функции - может принимать вид любого действительного числа.

3. Данная функция нечетная.

4. Монотонно возрастает на всем промежутке рассмотрения функции.

5. График всех степенных функций с нечетным показателем степени идентичен функции у = х 3 .

3) Функция имеет четный отрицательный натуральный показатель: у = х -2 n .

Все мы знаем, что отрицательный показатель степени позволяет опустить степень в знаменатель и менять знак показателя степени, то есть получится вид у = 1/х 2 n .

1. Аргумент данной функции может принимать любые значения, кроме нуля, поскольку переменная стоит в знаменателе.

2. Так как показатель степени - четное число, то функция не может принимать отрицательные значения. А раз аргумент не может быть равен нулю, то следует исключить и значение функции, равное нулю. Это значит, что функция может принимать только положительные значения.

3. Данная функция является четной.

4. При отрицательном аргументе функция монотонно возрастает, а при положительном - убывает.

Вид графика функции у = х -2:

4) Функция с отрицательным нечетным показателем степени у = х -(2 n +1) .

1. Данная функция существует при всех значениях аргумента, кроме числа нуль.

2. Функция принимает все действительные значения, кроме числа нуль.

3. Данная функция является нечетной.

4. На двух рассматриваемых промежутках убывает.

Рассмотрим пример графика функции с отрицательным нечетным показателем степени на примере у = х -3 .

Вы знакомы с функциями y=x, y=x 2 , y=x 3 , y=1/x и т. д. Все эти функции являются частными случаями степенной функции, т. е. функцииy=x p , где p - заданное действительное число. Свойства и график степенной функции существенно зависит от свойств степени с действительным показателем, и в частности от того, при каких значенияхx иp имеет смысл степеньx p . Перейдем к подобному рассмотрению различных случаев в зависимости от показателя степениp.

    Показатель p=2n -четное натуральное число.

В этом случае степенная функция y=x 2n , гдеn - натуральное число, обладает следующими

свойствами:

    область определения - все действительные числа, т. е. множество R;

    множество значений - неотрицательные числа, т. е. y больше или равно 0;

    функция y=x 2n четная, так какx 2n =(-x) 2n

    функция является убывающей на промежутке x<0 и возрастающей на промежутке x>0.

График функции y=x 2n имеет такой же вид, как например график функцииy=x 4 .

2. Показатель p=2n-1 - нечетное натуральное число В этом случае степенная функцияy=x 2n-1 , где натуральное число, обладает следующими свойствами:

    область определения - множество R;

    множество значений - множество R;

    функция y=x 2n-1 нечетная, так как (-x) 2n-1 =x 2n-1 ;

    функция является возрастающей на всей действительной оси.

График функции y=x2n-1 имеет такой же вид, как, например, график функцииy=x3 .

3.Показатель p=-2n , гдеn - натуральное число.

В этом случае степенная функция y=x -2n =1/x 2n обладает следующими свойствами:

    множество значений - положительные числа y>0;

    функция y=1/x 2n четная, так как1/(-x) 2n =1/x 2n ;

    функция является возрастающей на промежутке x<0 и убывающей на промежутке x>0.

График функции y=1/x 2n имеет такой же вид, как, например, график функции y=1/x 2 .

4.Показатель p=-(2n-1) , гдеn - натуральное число. В этом случае степенная функцияy=x -(2n-1) обладает следующими свойствами:

    область определения - множество R, кроме x=0;

    множество значений - множество R, кроме y=0;

    функция y=x -(2n-1) нечетная, так как (-x) -(2n-1) =-x -(2n-1) ;

    функция является убывающей на промежутках x<0 иx>0 .

График функции y=x -(2n-1) имеет такой же вид, как, например, график функцииy=1/x 3 .

      1. Обратные тригонометрические функции, их свойства и графики.

Обратные тригонометрические функции, их свойства и графики. Обра́тные тригонометри́ческие фу́нкции (круговые функции , аркфункции ) - математические функции, являющиеся обратными к тригонометрическим функциям.

    1. Функция arcsin

График функции .

Арксинусом числа m называется такое значение угла x , для которого

Функция непрерывна и ограничена на всей своей числовой прямой. Функция является строго возрастающей.

      1. [Править]Свойства функции arcsin

      1. [Править]Получение функции arcsin

Дана функция На всей своей области определения она является кусочно-монотонной , и, значит, обратное соответствие функцией не является. Поэтому мы рассмотрим отрезок, на котором она строго возрастает и принимает все значения области значений - . Так как для функции на интервале каждому значению аргумента соответствует единственное значение функции, то на этом отрезке существует обратная функция график которой симметричен графику функции на отрезке относительно прямой

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Тема урока: Степенная функция и ее график.

Как алгебраисты вместо АА, ААА, … пишут А 2 , А 3 , … так я вместо пишу а -1 , а -2 , а -3 , … Ньютон И.

у = х х у у = х 2 х у у = х 3 х у х у Прямая Парабола Кубическая парабола Гипербола Нам знакомы функции: Все эти функции являются частными случаями степенной функции

где р – заданное действительное число Определение: Степенной функцией называется функция вида у = х p Свойства и график степенной функции зависят от свойств степени с действительным показателем, и в частности от того, при каких значениях х и р имеет смысл степень х р.

Функция у=х 2 n четная, т.к. (– х) 2 n = х 2 n Функция убывает на промежутке Функция возрастает на промежутке Степенная функция: Показатель р = 2n – четное натуральное число у = х 2 , у = х 4 , у = х 6 , у = х 8 , … 1 0 х у у = х 2

y x - 1 0 1 2 у = х 2 у = х 6 у = х 4 Степенная функция: Показатель р = 2n – четное натуральное число у = х 2 , у = х 4 , у = х 6 , у = х 8 , …

Функция у=х 2 n -1 нечетная, т.к. (– х) 2 n -1 = – х 2 n -1 Функция возрастает на промежутке Степенная функция: Показатель р = 2n-1 – нечетное натуральное число у = х 3 , у = х 5 , у = х 7 , у = х 9 , … 1 0

Степенная функция: y x - 1 0 1 2 у = х 3 у = х 7 у = х 5 Показатель р = 2n-1 – нечетное натуральное число у = х 3 , у = х 5 , у = х 7 , у = х 9 , …

Функция у=х- 2 n четная, т.к. (– х) -2 n = х -2 n Функция возрастает на промежутке Функция убывает на промежутке Степенная функция: Показатель р = -2n – где n натуральное число у = х -2 , у = х -4 , у = х -6 , у = х -8 , … 0 1

1 0 1 2 у = х -4 у = х -2 у = х -6 Степенная функция: Показатель р = -2n – где n натуральное число у = х -2 , у = х -4 , у = х -6 , у = х -8 , … y x

Функция убывает на промежутке Функция у=х -(2 n -1) нечетная, т.к. (– х) –(2 n -1) = – х –(2 n -1) Функция убывает на промежутке Степенная функция: Показатель р = -(2n-1) – где n натуральное число у = х -3 , у = х -5 , у = х -7 , у = х -9 , … 1 0

у = х -1 у = х -3 у = х -5 Степенная функция: Показатель р = -(2n-1) – где n натуральное число у = х -3 , у = х -5 , у = х -7 , у = х -9 , … y x - 1 0 1 2

Степенная функция: Показатель р – положительное действительное нецелое число у = х 1,3 , у = х 0,7 , у = х 2,2 , у = х 1/3 ,… 0 1 х у Функция возрастает на промежутке

у = х 0,7 Степенная функция: Показатель р – положительное действительное нецелое число у = х 1,3 , у = х 0,7 , у = х 2,2 , у = х 1/3 ,… y x - 1 0 1 2 у = х 0,5 у = х 0,84

Степенная функция: Показатель р – положительное действительное нецелое число у = х 1,3 , у = х 0,7 , у = х 2,2 , у = х 1/3 ,… y x - 1 0 1 2 у = х 1,5 у = х 3,1 у = х 2,5

Степенная функция: Показатель р – отрицательное действительное нецелое число у= х -1,3 , у= х -0,7 , у= х -2,2 , у = х -1/3 ,… 0 1 х у Функция убывает на промежутке

у = х -0,3 у = х -2,3 у = х -3,8 Степенная функция: Показатель р – отрицательное действительное нецелое число у= х -1,3 , у= х -0,7 , у= х -2,2 , у = х -1/3 ,… y x - 1 0 1 2 у = х -1,3


По теме: методические разработки, презентации и конспекты

Применение интеграции в учебном процессе как способа развития аналитических и творческих способностей....

1. Степенная функция, ее свойства и график;

2. Преобразования:

Параллельный перенос;

Симметрия относительно осей координат;

Симметрия относительно начала координат;

Симметрия относительно прямой y = x;

Растяжение и сжатие вдоль осей координат.

3. Показательная функция, ее свойства и график, аналогичные преобразования;

4. Логарифмическая функция , ее свойства и график;

5. Тригонометрическая функция, ее свойства и график, аналогичные преобразования (y = sin x; y = cos x; y = tg x);

Функция: y = x\n - ее свойства и график.

Степенная функция, ее свойства и график

y = x, y = x 2 , y = x 3 , y = 1/x и т. д. Все эти функции являются частными случаями степенной функции, т. е. функции y = x p , где p - заданное действительное число.
Свойства и график степенной функции существенно зависит от свойств степени с действительным показателем, и в частности от того, при каких значениях x и p имеет смысл степень x p . Перейдем к подобному рассмотрению различных случаев в зависимости от
показателя степени p.

  1. Показатель p = 2n - четное натуральное число.

y = x 2n , где n - натуральное число, обладает следующими свойствами:

  • область определения - все действительные числа, т. е. множество R;
  • множество значений - неотрицательные числа, т. е. y больше или равно 0;
  • функция y = x 2n четная, так как x 2n = (-x) 2n
  • функция является убывающей на промежутке x < 0 и возрастающей на промежутке x > 0.

График функции y = x 2n имеет такой же вид, как например график функции y = x 4 .

2. Показатель p = 2n - 1 - нечетное натуральное число

В этом случае степенная функция y = x 2n-1 , где натуральное число, обладает следующими свойствами:

  • область определения - множество R;
  • множество значений - множество R;
  • функция y = x 2n-1 нечетная, так как (-x) 2n-1 = x 2n-1 ;
  • функция является возрастающей на всей действительной оси.

График функции y = x 2n-1 y = x 3 .

3. Показатель p = -2n , где n - натуральное число.

В этом случае степенная функция y = x -2n = 1/x 2n обладает следующими свойствами:

  • множество значений - положительные числа y>0;
  • функция y = 1/x 2n четная, так как 1/(-x) 2n = 1/x 2n ;
  • функция является возрастающей на промежутке x0.

График функции y = 1/x 2n имеет такой же вид, как, например, график функции y = 1/x 2 .

4. Показатель p = -(2n-1) , где n - натуральное число.
В этом случае степенная функция y = x -(2n-1) обладает следующими свойствами:

  • область определения - множество R, кроме x = 0;
  • множество значений - множество R, кроме y = 0;
  • функция y = x -(2n-1) нечетная, так как (-x) -(2n-1) = -x -(2n-1) ;
  • функция является убывающей на промежутках x < 0 и x > 0 .

График функции y = x -(2n-1) имеет такой же вид, как, например, график функции y = 1/x 3 .








2024 © kubanteplo.ru.