Использование RF-модулей. Использование RF-модулей Подключение двух rf модулей 433 мгц


Радио модули: передатчик (FS1000A) и приёмник (MX-RM-5V) - предназначены для передачи данных по радиоканалу, на нелицензируемой частоте 433,920 МГц, лежащей в диапазоне LPD433 (Low Power Device) предназначенном для маломощных устройств.

Характеристики передатчика FS1000A

  • Рабочая частота: 433.920 МГц (указывается на металлическом корпусе модуля);
  • Дальность передачи: до 100 м (в зоне прямой видимости, без антенны);
  • Выходная мощность: до 40 мВт;
  • Напряжение питания: 3 ... 12 В;
  • Ток потребления в режиме ожидания: 0 мА;
  • Ток потребления в режиме передачи: 20 .. 30 мА;
  • Рабочая температура: -10 ... 70 °C;
  • Габариты: 19х19х8 мм;
  • Вес: 2 г;

Характеристики приёмника MX-RM-5V

  • Рабочая частота: 433.920 МГц (указывается в таблице на печатной плате, если это не шаблон 123456789);
  • Тип модуляции: ASK - амплитудная манипуляция;
  • Дальность приёма: до 100 м (в зоне прямой видимости, без антенны);
  • Напряжение питания: 5В;
  • Ток потребления: 4 мА;
  • Габариты 30х14х17 мм;
  • Вес: 4 г;

Подключение

Для удобства подключения к Arduino воспользуйтесь , или .

Передатчик подключается к любым выводам , а подключение приёмника зависит от типа используемой библиотеки:

  • При использовании библиотек , RemoteSwitch, RCSwitch, приёмник подключается только к выводу использующему внешнее прерывание. Но данные библиотеки не используют аппаратные таймеры, а значит не ограничивают Вас в использовании ШИМ.
  • При использовании библиотеки , приёмник подключается к любому выводу . Но библиотека использует первый аппаратный таймер, что накладывает ограничение на использование как данного таймера, так и его выводов ШИМ.

Питание

  • К выводам Vcc и GND передатчика, подаётся напряжение 2 ... 12 В постоянного тока.
  • К выводам Vcc и GND приёмника, подаётся напряжение 5 В постоянного тока.

Подробнее о модулях

  • Передатчик использует цифровой вход для передачи сигнала с использованием амплитудной манипуляции ASK (Amplitude Shift Keying). Амплитудная манипуляция (ASK) отличается от амплитудной модуляции (AM - amplitude modulation) тем, что модулировать можно любой сигнал (как цифровой, так и аналоговый), а манипулировать только цифровым.
  • Данные передаются по радиоканалу на расстоянии до 100 м в пределах прямой видимости (указано производителем)
  • Расстояние уверенного приёма можно увеличить, если подключить антенны к передатчику и приёмнику.
  • Приёмник имеет два, электрически соединённых, цифровых выхода (можно использовать любой). На выходе устанавливается уровень логической «1» при наличии несущей частоты в радиоканале и уровень логического «0» при её отсутствии.
  • В приёмнике реализован блок автоматической регулировки усиления (AGC - Automatic Gain Control) благодаря которому увеличивается дальность приёма, но при отсутствии сигнала от передатчика, на выходе приёмника наблюдаются хаотичные чередования логических уровней.
  • Приемник критичен даже к незначительным пульсациям на шине питания. Если таковые имеются, то приемник принимает их за информационный сигнал, усиливает и выводит на выход в виде логических уровней. Пульсации на шине питания могут вызывать такие устройства как: сервоприводы, LED индикаторы, устройства с собственными генераторами или использующие ШИМ и т.д.
  • Влияние пульсаций на приёмник можно снизить несколькими способами, вот некоторые из них:
    • Использовать, для питания Arduino, внешний источник, а не шину USB. Так как напряжение на выходе многих внешних источников питания контролируется или сглаживается. В отличии от шины USB, где напряжение может существенно «проседать».
    • Установить на шине питания приёмника сглаживающий конденсатор.
    • Использовать отдельное стабилизированное питание для приёмника.
    • Использовать отдельное питание для устройств вносящих пульсации в шину питания.

Антенны

Первый усилитель любого приёмника и последний усилитель любого передатчика, это антенна. Самая простая антенна - штыревая (отрезок провода определённой длины). Длина антенны (как приёмника, так и передатчика), должна быть кратна четверти длины волны несущей частоты. То есть, штыревые антенны, бывают четвертьволновые (L/4), полуволновые (L/2) и равные длине волны (1L).

На этом уроке мы решим задачу по передаче радиосигнала между двумя контроллерами Ардуино с помощью популярного приемопередатчика с частотой 433МГц. На самом деле, устройство по передаче данных состоит из двух модулей: приемника и передатчика. Данные можно передавать только в одном направлении. Это важно понимать при использовании этих модулей. Например, можно сделать дистанционное управление любым электронным устройством, будь то мобильный робот или, например, телевизор. В этом случае данные будут передаваться от пульта управления к устройству. Другой вариант — передача сигналов с беспроводных датчиков на систему сбора данных. Здесь уже маршрут меняется, теперь передатчик стоит на стороне датчика, а приемник на стороне системы сбора. Модули могут иметь разные названия: MX-05V, XD-RF-5V, XY-FST, XY-MK-5V, и т.п., но все они имеют примерно одинаковый внешний вид и нумерацию контактов. Также, распространены две частоты радиомодулей: 433 МГц и 315 МГц.

1. Подключение

Передатчик имеет всего три вывода: Gnd, Vcc и Data.
Подключаем их к первой плате Ардуино по схеме: Собираем оба устройства на макетной плате и приступаем к написанию программ.

2. Программа для передатчика

Для работы с радиомодулями воспользуемся библиотекой RCSwitch . Напишем программу, которая будет каждую секунду по-очереди отправлять два разных сообщения. #include RCSwitch mySwitch = RCSwitch(); void setup() { mySwitch.enableTransmit(2); } void loop() { mySwitch.send(B0100, 4); delay(1000); mySwitch.send(B1000, 4); delay(1000); } Разберем программу. Первое что мы сделали — объявили объект для работы с передатчиком и назвали его mySwitch. RCSwitch mySwitch = RCSwitch(); Затем, внутри стандартной функции setup включили передатчик и указали вывод, к которому он подключен: mySwitch.enableTransmit(2); Наконец, в основном цикле программы loop отправляем сначала одно сообщение, а затем и второе с помощью функции send : mySwitch.send(B1000, 4); Функция send имеет два аргумента. Первый — это отправляемое сообщение, которое будет отправляться в эфир в виде пачки импульсов. Второй аргумент — это размер отправляемой пачки. В нашей программе мы указали сообщения в формате двоичного числа. На это указывает английская буква «B» в начале кода B1000. В десятеричном представлении это число превратится в восьмерку. Так что мы могли вызвать функцию send так: mySwitch.send(8, 4); Также send умеет принимать двоичные строки: mySwitch.send("1000", 4);

3. Программа для приемника

Теперь напишем программу для приемника. Для демонстрации факта передачи мы будем зажигать светодиод, подключенный к выводу №3 на плате Ардуино. Если приемник поймал код B1000 — включим светодиод, а если B0100 — выключим. #include RCSwitch mySwitch = RCSwitch(); void setup() { pinMode(3, OUTPUT); mySwitch.enableReceive(0); } void loop() { if(mySwitch.available()){ int value = mySwitch.getReceivedValue(); if(value == B1000) digitalWrite(3, HIGH); else if(value == B0100) digitalWrite(3, LOW); mySwitch.resetAvailable(); } } Функция available возвращает истину, если передатчик принял хоть какие-то данные: mySwitch.available() Функция getReceivedValue извлекает из потока данных одну пачку и декодирует её в число. В программе мы присваиваем полученное число переменной value : int value = mySwitch.getReceivedValue();

Задания

Теперь можно попробовать потренироваться и сделать разные полезные устройства. Вот несколько идей.
  1. Пульт для светильника. На стороне приемника , включенный в цепь питания светильника (осторожно, 220 Вольт!). На стороне передатчика: . Написать программы для приемника и передатчика, которые по нажатию кнопки будут включать удаленное реле. При повторном нажатии кнопки реле будет выключаться.
  2. Уличный термометр с радиоканалом. На стороне передатчика разместить . Предусмотреть автономное питание от батареек. На стороне приемника: . Написать программы для приемника и передатчика, которые позволят выводить показания температуры с удаленного датчика на дисплее.

Заключение

Итак, теперь мы знаем простой и недорогой способ передавать данные на расстоянии. К сожалению, скорость передачи и дистанция в таких радиомодулях весьма ограничены, так что мы не сможем полноценно управлять, например квадрокоптером. Однако, сделать радиопульт для управления простым бытовым прибором: светильником, вентилятором или телевизором, нам под силу. На основе приемопередатчиков с частотой 433 МГц и 315 МГц работает большинство радиоканальных пультов управления. Имея Ардуино и приемник, мы можем декодировать сигналы управления и повторить их. Подробнее о том, как это сделать мы напишем в одном из следующих уроков!

Иногда, между устройствами требуется установить беспроводное соединение. В последнее время для этой цели все чаще стали применять Bluetooth и Wi-Fi модули. Но одно дело передавать видео и здоровенные файлы, а другое - управлять машинкой или роботом на 10 команд. С другой стороны радиолюбители часто строят, налаживают и переделывают заново приемники и передатчики для работы с готовыми шифраторами/дешифраторами команд. В обеих случаях можно использовать достаточно дешевые RF-модули. Особенности их работы и использования под катом.

Типы модулей

RF-модули для передачи данных работают в диапазоне УКВ и используют стандартные частоты 433МГц, 868МГц либо 2,4ГГц (реже 315МГц, 450МГц, 490МГц, 915МГц и др.) Чем выше несущая частота, тем с большей скоростью можно передавать информацию.
Как правило, выпускаемые RF-модули предназначены для работы с каким-либо протоколом передачи данных. Чаще всего это UART (RS-232) или SPI. Обычно UART модули стоят дешевле, а так же позволяют использовать нестандартные (пользовательские) протоколы передачи. Вначале я думал склепать что-то типа такого , но вспомнив свой горький опыт изготовления аппаратуры радиоуправления выбрал достаточно дешевые HM-T868 и HM-R868 (60грн. = менее $8 комплект). Существуют также модели HM-*315 и HM-*433 отличающиеся от нижеописанных лишь несущей частотой (315МГц и 433МГц соответственно). Кроме того есть множество других модулей аналогичных по способу работы, поэтому информация может быть полезной обладателям и других модулей.

Передатчик

Почти все RF-модули представляют собой небольшую печатную плату с контактами для подключения питания, передчи данных и управляющих сигналов. Рассмотрим передатчик(трансмиттер) HM-T868
На нем имеется трехконтактный разъем: GND(общий), DATA(данные), VCC(+питания), а также пятачок для припайки антенны(я использовал огрызок провода МГТФ на 8,5см - 1/4 длинны волны).

Приемник

Ресивер HM-R868, внешне, очень похож на соответствующий ему трансмиттер

но на его разъеме есть четвертый контакт - ENABLE, при подаче на него питания приемник начинает работать.

Работа

Судя по документации, рабочим напряжением является 2,5-5В, чем выше напряжение, тем большая дальность работы. По сути дела - это радиоудлинитель: при подаче напряжения на вход DATA передатчика, на выходе DATA приемника так же появится напряжение (при условии что на ENABLE также будет подано напряжение). НО, есть несколько нюансов. Во-первых: частота передачи данных (в нашем случае - это 600-4800 бит/с). Во-вторых: если на входе DATA нету сигнала более чем 70мс, то передатчик переходит в спящий режим(по-сути отключается). В-третьих: если в зоне приема ресивера нету работающего передатчика - на его выходе появляется всякий шум.

Проведем небольшой эксперимент: к контактам GND и VCC трансмиттера подключим питание. Вывод DATA соединим с VCC через кнопку или джампер. К контактам GND и VCC ресивера также подключаем питание, ENABLE и VCC замыкаем между собой. К выходу DATA подключаем светодиод (крайне желательно через резистор). В качестве антенн используем любой подходящий провод длинной в 1/4 длинны волны. Должна получиться такая схемка:


Сразу после включения приемника и/или подачи напряжения на ENABLE должен загореться светодиод и гореть непрерывно (ну или почти непрерывно). После нажатии кнопки на передатчике, со светодиодом также ничего не происходит - он продолжает гореть и дальше. При отпускании кнопки светодиод мигнет(погаснет и снова загорится) и продолжает гореть дальше. При повторном нажатии и отпускании кнопки все должно повторится. Что же там происходило? Во время включения приемника, передатчик находился в спящем состоянии, приемник не нашел нормального сигнала и стал принимать всякий шум, соответственно и на выходе появилась всякая бяка. На глаз отличить непрерывный сигнал от шума нереально, и кажется, что светодиод светит непрерывно. После нажатия кнопки трансмиттер выходит из спячки и начинает передачу, на выходе ресивера появляется логическая «1» и светодиод светит уже действительно непрерывно. После отпускания кнопки передатчик передает логический «0», который принимается приемником и на его выходе также возникает «0» - светодиод, наконец, гаснет. Но спустя 70мс передатчик видит что на его входе все тот же «0» и уходит в сон, генератор несущей частоты отключается и приемник начинает принимать всякие шумы, на выходе шум - светодиод опять загорается.

Из вышесказанного следует, что если на входе трансмиттера сигнал будет отсутствовать менее 70мс и находится в правильном диапазоне частот, то модули будут вести себя как обычный провод (на помехи и другие сигналы мы пока не обращаем внимания).

Формат пакета

RF-модули данного типа можно подключить напрямую к аппаратному UART или компьютеру через MAX232, но учитывая особенности их работы я бы посоветовал использовать особые протоколы, описанные программно. Для своих целей я использую пакеты следующего вида: старт-биты, байты с информацией, контрольный байт(или несколько) и стоп-бит. Первый старт-бит желательно сделать более длинным, это даст время чтобы передатчик проснулся, приемник настроился на него, а принимающий микроконтроллер(или что там у Вас) начал прием. Затем что-то типа «01010», если на выходе приемника такое, то это скорее всего не шум. Затем можно поставить байт идентификации - поможет понять какому из устройств адресован пакет и с еще большей вероятностью отбросит шумы. До этого момента информацию желательно считывать и проверять отдельными битами, если хоть один из них неправильный - завершаем прием и начинаем слушать эфир заново. Дальше передаваемую информацию можно считывать сразу по байтам, записывая в соответствующие регистры/переменные. По окончании приема выполняем контрольное выражение, если его результат равен контрольному байту - выполняем требуемые действия с полученной информацией, иначе - снова слушаем эфир. В качестве контрольного выражения можно считать какую-нибудь контрольную сумму, если передаваемой информации немного, либо Вы не сильны в программировании - можно просто посчитать какое-то арифметическое выражение, в котором переменными будут передаваемые байты. Но необходимо учитывать то, что в результате должно получится целое число и оно должно поместится в количество контрольных байт. Поэтому лучше вместо арифметических операций использовать побитовые логические: AND, OR, NOT и, особенно, XOR. Если есть возможность, делать контрольный байт нужно обязательно так как радиоэфир - вещь очень загаженная, особенно сейчас, в мире электронных девайсов. Порой, само устройство может создавать помехи. У меня, например, дорожка на плате с 46кГц ШИМ в 10см от приемника очень сильно мешала приему. И это не говоря о том, что RF-модули используют стандартные частоты, на которых в этот момент могут работать и другие устройства: рации, сигнализации, радиоуправление, телеметрия и пр.

433/315 МГц, вы узнаете из этого небольшого обзора. Эти радиомодули обычно продают в паре - с одним передатчиком и одним приемником. Пару можно купить на eBay по $4, и даже $2 за пару, если вы покупаете 10 штук сразу.

Большая часть информации в интернете обрывочна и не очень понятна. Поэтому мы решили проверить эти модули и показать, как получить с их помощью надежную связь USART -> USART.

Распиновка радиомодулей

В общем, все эти радиомодули имеют подключение 3 основных контакта (плюс антенна);

Передатчик

  • Напряжение vcc (питание +) 3В до 12В (работает на 5В)
  • GND (заземление -)
  • Приём цифровых данных.

Приемник

  • Напряжение vcc (питание +) 5В (некоторые могут работать и на 3.3 В)
  • GND (заземление -)
  • Выход полученых цифровых данных.

Передача данных

Когда передатчик не получает на входе данных, генератор передатчика отключается, и потребляет в режиме ожидания около нескольких микроампер. На испытаниях вышло 0,2 мкА от 5 В питания в выключенном состоянии. Когда передатчик получает вход каких-то данных, он излучает на 433 или 315 МГц несущей, и с 5 В питания потребляет около 12 мА.

Передатчик можно питать и от более высокого напряжения (например 12 В), которое увеличивает мощность передатчика и соответственно дальность. Тесты показали с 5 В питанием до 20 м через несколько стен внутри дома.

Приемник при включении питания, даже если передатчик не работает, получит некоторые статические сигналы и шумы. Если будет получен сигнал на рабочей несущей частоте, то приемник автоматически уменьшит усиление, чтобы удалить более слабые сигналы, и в идеале будет выделять модулированные цифровые данные.

Важно знать, что приемник тратит некоторое количество времени, чтобы отрегулировать усиление, так что никаких "пакетов" данных! Передачу следует начинать с "вступления" до основных данных и затем приемник будет иметь время, чтобы автоматически настроить усиление перед приёмом важных данных.

Тестирование RF модулей

При испытаниях обоих модулей от +5В источника постоянного тока, а также с 173 мм вертикальной штыревой антенной. (для частоты 433,92 МГц это "1/4 волны"), было получено реальных 20 метров через стены, и тип модулей не сильно влияет на эти тесты. Поэтому можно предположить, что эти результаты типичны для большинства блоков. Был использован цифровой источник сигнала с точной частотой и 50/50 скважностью, это было использовано для модуляции данных передатчика.

Обратите внимание, что все эти модули, как правило, стабильно работают только до скорости 1200 бод или максимум 2400 бод серийной передачи, если конечно условия связи идеальные (высокий уровень сигнала).

Выше показан простой вариант блока для последовательной передачи информации микроконтроллеру, которая будет получена с компьютера. Единственное изменение - добавлен танталовый конденсатор 25 В 10 мкф на выводы питания (Vcc и GND) на оба модуля.

Вывод

Множество людей используют эти радиомодули совместно с контроллерами Arduino и другими подобными, так как это самый простой способ получить беспроводную связь от микроконтроллера на другой микроконтроллер, или от микроконтроллера к ПК.

Обсудить статью RF РАДИОМОДУЛИ НА 433 МГЦ

Устройства дистанционного управления (ДУ) давно и прочно вошли в нашу жизнь. Это и инфракрасные пульты для управления бытовыми приборами, и беспроводные звонки, и автомобильные сигнализации и т.д. Отчасти их созданию послужила лень, отчасти технические ограничения, но теперь все мы пользуемся такими устройствами весьма широко.

Есть особый класс устройств дистанционного управления по радиоканалу на одной из нелицензируемых частот в полосе от 433,075 до 433,790 МГц - их можно свободно использовать для любых нужд, правда, с некоторыми ограничениями по мощности излучаемого сигнала.

Именно эти устройства получили, пожалуй, наибольшее распространение в системах дистанционного управления по радиоканалу. Они недорого стоят, просты в установке и обслуживании, имеют небольшие габариты и не требуют специальных антенн - достаточно куска провода.

С помощью таких устройств можно на расстоянии включить освещение на садовом участке, открыть калитку или автоматические ворота, включить электродвигатель или нагреватель.

Ограничения, накладываемые на мощность передатчика, сказываются на дальности действия. Стандартное значение дальности не превышает 100 метров на открытом пространстве. В помещении дальность существенно зависит от свойств материалов, через которые распространяется электромагнитное излучение передатчика и геометрии самого помещения. В этом случае только натурный эксперимент может помочь определить дальность.

Следует отметить, что и в этом классе устройств дистанционного управления есть специальные модели с повышенной дальностью работы. Также дальность можно повысить, если применить направленные антенны на стороне передатчика и/или приемника.

В предлагаемом обзоре мы рассмотрим устройства дистанционного управления для DIY-проектов, завоевавшие популярность пользователей продукции компании Мастер Кит. Все эти устройства прошли испытания реальной эксплуатацией в течение заметного времени, надежны и просты в использовании.

Для удобства мы свели описания устройств ДУ в таблицу, расположенную в конце обзора. Таблица поможет выбрать самые подходящие из них для ваших проектов.

Предлагаемые устройства можно разделить, прежде всего, на две категории:

комплекты ДУ, включающие в себя пару передатчик-приемник (кнопочный пульт-передатчик в виде брелка или печатной платы с контактами; приемник в виде платы с контактами или исполнительными элементами); при этом приемник уже настроен на прием сигналов именно от того передатчика, который входит в комплект;

отдельные передатчики и приемники, требующие настройки для работы в паре.

Передатчики, в свою очередь, могут быть специализированными и предназначенными для работы с определенным видом приемников, и универсальными. Это необходимо учитывать, если вы приобретаете устройства по отдельности, или предполагаете использовать несколько брелков-передатчиков с одним приемником, а также несколько приемников с одним брелком.

Следует отметить, что с целью уменьшения возможных ложных срабатываний исполнительное устройство приемника, как правило, включается через приблизительно одну секунду после нажатия кнопки или подачи управляющего сигнала на передатчик.

Несколько слов о терминологии основных режимов работы исполнительных устройств (как правило, реле) модулей ДУ:

  • в режиме «кнопка» исполнительное реле приемника срабатывает в момент нажатия кнопки или подачи управляющего сигнала на передатчик, и удерживается в этом состоянии, пока кнопка нажата; при отпускании кнопки реле также отпускает;
  • в режиме «триггер» однократное нажатие кнопки включает реле, вторичное нажатие - выключает.

При разработке проектов на предлагаемых устройствах ДУ необходимо учитывать, что они не обеспечивают обратную связь, поэтому контроль срабатывания исполнительных систем остается отдельной задачей.

Рассмотрим кратко особенности некоторых модулей дистанционного управления.

Простую и надежную одноканальную систему ДУ можно собрать на модуле MK333 с дополнительными брелками-передатчиками MK336 . Миниатюрный приемник с прилагаемым корпусом можно питать как переменным напряжением 220 В, так и постоянным 12 В при подключении последнего за встроенным блоком питания от переменного напряжения. Система может работать только в триггерном режиме - одна кнопка передатчика включает реле приемника, вторая - выключает. Посмотрите видео , размещенное в конце описания, из которого можно узнать, как заменить выключатель торшера на дистанционный с помощью модуля MK333 .

Широкие возможности для собственных проектов предоставляет комплект MP324M с четырехкнопочным пультом и четырехканальным приемником с выходами уровня TTL (транзисторно-транзисторной логики). Используя дополнительные модули, можно реализовать несколько режимов исполнительных систем с помощью одного приемника.

Если для вашего проекта необходимы два мощных канала управления, обратите внимание на устройство MP325M , имеющее на борту два реле по 2 кВт и работающее в режимах «кнопка» и «триггер», устанавливаемые для каждого канала отдельно с помощью перемычек (джамперов) на плате. Прочтите статьи, посвященные применению этого устройства:

  1. «Дистанционное управление распашными воротами своими руками »
  2. «Беспроводной реверс автомобильной лебедки или электродвигателя постоянного тока »

Модуль ДУ MP326M дает возможность управлять четырьмя каналами с настраиваемыми режимами «кнопка» и «триггер» для каждого канала.

Устройство MP426 SE также имеет четыре канала, но, в отличие от предыдущего, работает в трех режимах - «кнопка», «триггер» и «перебор каналов».

Для реализации проектов с применением микроконтроллеров подойдут комплекты приемник-передатчик MP433 и MP433PRO . Эти пары являются аналоговыми устройствами, не осуществляющими кодировку передаваемого сигнала. Вы сами можете сформировать уникальные кодирующие последовательности, затрудняющие их несанкционированную дешифровку. С помощью микроконтроллера, например, широко распространенной платформы Ардуино, на основе предлагаемых модулей можно реализовать многоканальное управление радиоуправляемыми моделями.

Устройство MP433PRO отличается увеличенным расстоянием - до 600 м в свободном пространстве и расширенным диапазоном температур, позволяющим использовать его вне помещений.

Универсальный пульт дистанционного управления MP433/передатчик является поистине находкой для пользователей систем ДУ! Он предназначен для совместной работы с беспроводными системами диапазона 433 МГц с ASK модуляцией и поддерживает большое количество встраиваемых систем управления освещением и розеток с фиксированным и обучающим кодом, например, таких как WOKEE и TELEIMPEX и им подобные. Также пульт поддерживает системы, построенные на микросхемах SC5262 / SC5272, HX2262 / HX2272, PT2262 / PT2272, EV1527, RT1527, FP1527, HS1527, SC5211, HS2260, SC1527, SC2262.

Приемники MP911 , MP912 и MP913 управляются от предлагаемого отдельно пульта-передатчика MP913 и отличаются режимами работы и числом каналов. Первый из этих приемников реализует одноканальный режим «кнопка», второй - одноканальный «триггер», третий - двухканальная «кнопка».

В этом обзоре мы упомянем стоящий особняком модуль MP8036mhz , который является настоящей базой для управления беспроводными устройствами в диапазоне 433 МГц. Этот модуль может работать в режимах сканера, дубликатора, репитера, маяка. В режиме сканера, благодаря наличию дисплея, можно увидеть код, передаваемый сканируемым передатчиком. Модуль имеет четыре логических входа для подключения четырех кнопок управления или линий контроля и восемь TTL-выходов для подключения силовых модулей. Дальность работы с беспроводными приемниками достигает 600 метров (при использовании комплекта MP433PRO). При использовании направленных антенн дальность может быть увеличена до нескольких километров.

Несколько слов в заключение.

Прежде чем добавлять или «обучать» передатчики, внимательно прочтите описания этих процедур на сайте. Производимые действия отличаются для разных устройств!

Обращаем ваше внимание на имеющиеся в описаниях устройств ДУ комплекты с дополняющими их модулями. Например, вместе с парой передатчик-приемник MP324M можно приобрести силовое реле MP146 и источник питания PW1245 , что обойдется вам дешевле, чем покупка этих устройств по отдельности. Комплектом (MP324M + MP146 + PW1245) - дешевле!

Сравнительная таблица популярных устройств дистанционного управления на частоте 433 МГц

Артикул Функцио-
нальное
назначение
Питание Число
каналов
управления
Максимальная
мощность
одного
канала
управления
Дополни-
тельный
брелок-
передатчик
Дальность Режимы
работы
Особенности
MK333 Комплект
брелок-
передатчик+
приемник
~220 В 1 ~1000 Вт (7 А) MK336 40 м Только триггер . самый миниатюрный приемник;
. корпус для приемника в комплекте;
. до 20 дополнительных брелков.
MK336 Брелок-передатчик Бат.12 В 40 м . дополнительный брелок для MK333
MP324M Комплект
брелок-
передатчик+
приемник
=5 В
(приемник)
Бат.12 В
(передатчик)
4 Маломощный,
TTL-уровни
MP433/
передатчик
MP325M/
передатчик
MP324M/
передатчик
100 м Кнопка . для реализации режимов «триггер»
и «импульс» используется MP146 ;
. диапазон рабочих температур
приемника от -40 до +80 градусов;
. при использовании брелка MP433/
передатчик число подключаемых брелков
неограниченно.
MP324M/
передатчик
Брелок-
передатчик
Бат.12В 4 100 м . подходит для MP324M , MP326M
. 4 кнопки;
. можно заменить на MP433/
передатчик.
MP325M Комплект
брелок-
передатчик+
приемник
=12 В
(приемник)
Бат.12 В
(передатчик
2 ~2000 Вт (10 А) MP433/
передатчик
MP325M/
передатчик
MP324M/
передатчик
100 м Кнопка, триггер

При использовании брелка MP433/
передатчик число подключаемых
брелков неограниченно;
. светодиодная индикация состояний реле;
. входы типа «триггер» для сброса реле.

MP325M/
передатчик
Брелок-
передатчик
Бат.12В 2 100 м . дополнительный брелок для MP325M
MP326M Комплект
брелок-
передатчик+
приемник
=12 В
(приемник)
Бат.12 В
(передатчик
4 ~2000 Вт (10 А) MP325M/
передатчик
MP324M/
передатчик
100 м Кнопка, триггер . светодиодная индикация состояний реле;
. сброс реле в режиме «триггер»;

брелков MP324M/ передатчик.
MP426 SE Комплект
брелок-
передатчик+
приемник
=12 В
(приемник)
Бат.12 В
(передатчик
4 ~1000 Вт (5 А) MP433/
передатчик
100м Кнопка, триггер,
перебор каналов
. три режима работы;
. неограниченное число дополнительных
брелков






2024 © kubanteplo.ru.