Очистные сооружения: что такое очистка сточных вод? Очистные сооружения воды Как очищают воду на станциях


Рублевская станция водоподготовки находится недалеко от Москвы, в паре километров от МКАДа, на северо-западе. Расположена она прямо на берегу Москвы-реки, откуда и забирает воду для очистки.

Чуть выше по течению Москва-реки располагается Рублевская плотина.

Плотина была построена в начале 30х годов. В настоящее время используется для регулирования уровня Москвы-реки, для того, чтобы мог функционировать водозабор Западной станции водоподготовки, который находится на несколько километров выше по течению.

Поднимемся наверх:

На плотине используется вальцовая схема - затвор двигается по наклонным направляющим в нишах с помощью цепей. Приводы механизма находятся сверху в будке.

Выше по течению находятся водозаборные каналы, вода с которых, как я понял, поступает на Черепковские очистные сооружения, находящиеся неподалеку от самой станции и являющиеся ее частью.

Иногда, для забора проб воды из реки Мосводоканал использует катер на воздушной подушке. Пробы забираются ежедневно по несколько раз в нескольких точках. Нужны они для определения состава воды и подбора параметров технологических процессов при ее очистке. В зависимости от погоды, времени года и прочих факторов состав воды сильно меняется и за этим постоянно следят.

Кроме того пробы воды из водопровода отбирают на выходе из станции и во множестве точек по всему городу, как сами Мосводоканаловцы, так и независимые организации.

Также имеется ГЭС небольшой мощности, включающая три агрегата.

В настоящее время она остановлена и выведена из эксплуатации. Заменять оборудование на новое - экономически не целесообразно.

Пора выдвигаться на саму станцию водоподготовки! Первое куда пойдем - насосная станция первого подъема. Она закачивает воду из Москвы-реки и поднимает ее вверх, на уровень самой станции, которая находится на правом, высоком, берегу реки. Заходим в здание, поначалу обстановка вполне обычная - светлые коридоры, информационные стенды. Неожиданно встречается квадратный проем в полу, под которым огромное пустое пространство!

Впрочем к нему мы еще вернемся, а пока пойдем дальше. Огромный зал с квадратными бассейнами, насколько я понял это что-то типа приемных камер, в которые поступает вода из реки. Сама река находится справа, за окнами. А насосы закачивающие воду - слева внизу за стенкой.

Снаружи здание выглядит так:

Фото с сайта Мосводоканала.

Тут же установлено оборудование, похоже это автоматическая станция анализа параметров воды.

Все сооружения на станции имеют весьма причудливую конфигурацию - много уровней, всевозможные лесенки, спуски, баки, и трубы-трубы-трубы.

Какой-то насос.

Спускаемся вниз, примерно на 16 метров и попадаем в машинный зал. Тут установлено 11 (три запасных) высоковольтных мотора, приводящих в движение центробежные насосы уровнем ниже.

Один из запасных моторов:

Для любителей шильдиков:)

Вода снизу закачивается в огромные трубы, которые вертикально проходят через зал.

Все электротехническое оборудование на станции выглядит очень аккуратно и современно.

Красавцы:)

Заглянем вниз и увидим улитку! Каждый такой насос имеет производительность 10 000 м 3 в час. Для примера, он мог бы полностью, от пола до потолка заполнить водой обычную трехкомнатную квартиру всего за минуту.

Спустимся на уровень ниже. Тут гораздо прохладнее. Этот уровень находится ниже уровня Москва-реки.

Не очищенная вода из реки по трубам поступает в блок очистных сооружений:

Таких блоков на станции несколько. Но перед тем как пойти туда, сначала посетим другое здание, называемое "Цех производства озона". Озон, он же O 3 используется для обеззараживания воды и удаления из нее вредных примесей, с помощью метода озоносорбции. Данная технология вводится Мосводоканалом в последние годы.

Для получения озона используется следующий техпроцесс: воздух с помощью компрессоров(справа на фото) нагнетается под давлением и попадает в охладители(слева на фото).

В охладителе воздух охлаждается в два этапа с использованием воды.

Затем подается на осушители.

Осушитель представляет из себя две емкости содержащие смесь поглощающую влагу. В то время как одна емкость используется, вторая восстанавливает свои свойства.

С обратной стороны:

Оборудование управляется с помощью графических сенсорных экранов.

Далее подготовленный холодный и сухой воздух поступает в генераторы озона. Генератор озона представляет собой большую бочку, внутри которой расположено множество трубок-электродов, на которые подается большое напряжение.

Так выглядит одна трубка(в каждом генераторе из десятки):

Ершик внутри трубки:)

Через стеклянное окошко можно посмотреть на весьма красивый процесс получения озона:

Пришло время осмотреть блок очистных сооружений. Заходим внутрь и долго поднимаемся по лестнице, в результате оказываемся на мостике в огромном зале.

Тут самое время рассказать про технологию очистки воды. Сразу скажу, что я не специалист и процесс понял лишь в общих чертах без особых подробностей.

После того как вода поднимается из реки, она попадает в смеситель - конструкция из нескольких последовательных бассейнов. Там в нее поочередно добавляют разные вещества. В первую очередь - порошковый активированный уголь (ПАУ). Затем в воду добавляют коагулянт (полиоксихлорид алюминия) – который заставляет мелкие частицы собираться в более крупные комки. Затем вводится специальное вещество называемое флокулянт - в результате чего примеси превращаются в хлопья. Затем вода попадает в отстойники, где все примеси осаждаются, после чего проходит через песчаные и угольные фильтры. В последнее время добавился и еще один этап - озоносорбция, но об этом ниже.

Все основные реагенты применяющиеся на станции (кроме жидкого хлора) в один ряд:

На фотографии насколько я понял - зал смесителя, найдите людей в кадре:)

Всевозможные трубы, резервуары и мостики. В отличие от канализационных очистных сооружений тут все гораздо запутаннее и не так интуитивно понятно, кроме того, если там большая часть процессов происходит на улице, то подготовка воды происходит полностью в помещениях.

Этот зал является лишь малой частью огромного здания. Частично продолжение можно разглядеть в проемах внизу, туда отправимся позже.

Слева стоят какие-то насосы, справа огромные баки с углем.

Там же очередная стойка с оборудованием измеряющим какие-то характеристики воды.

Озон является крайне опасным газом (первая, высшая категория опасности). Сильнейший окислитель, вдыхание которого может привести к летальному исходу. Поэтому процесс озонирования происходит в специальных закрытых бассейнах.

Всевозможная измерительная аппаратура и трубопроводы. По бокам - иллюминаторы, через которые можно посмотреть на процесс, сверху - прожекторы, которые также светят через стекла.

Внутри водичка очень активно бурлит.

Отработанный озон поступает к деструктору озона представляющим собой нагреватель и катализаторы, там озон полностью разлагается.

Переходим к фильтрам. На табло показывается скорость промывки(продувки?) фильтров. Фильтры со временем загрязняются и их очищают.

Фильтры представляют собой длинные резервуары наполненные гранулированным активированным углем(ГАУ) и мелким песком по специальной схеме.

Фильтры находятся в отдельном изолированном от внешнего мира пространстве, за стеклом.

Можно оценить масштаб блока. Фотография сделана посередине, если взглянуть назад, то можно увидеть то же самое.

В результате всех этапов очистки вода становится пригодной для питья и удовлетворяет всем нормам. Однако, запускать такую воду в город нельзя. Дело в том, что протяженность водопроводных сетей Москвы - тысячи километров. Есть участки с плохой циркуляцией, закрытые ответвления и т.п. Как результат - в воде могут начать размножаться микроорганизмы. Чтобы это избежать воду хлорируют. Раньше это делали путем добавления жидкого хлора. Однако он является крайне опасным реагентом (в первую очередь с точки зрения производства, перевозки и хранения), поэтому сейчас Мосводоканал активно переходит на гипохлорит натрия, который гораздо менее опасен. Для его хранения пару лет назад был построен специальный склад (привет HALF-LIFE).

Опять же все автоматизировано.

И компьютеризировано.

В конце концов, вода попадает в огромные подземные резервуары на территории станции. Эти резервуары наполняются и опустошаются в течение суток. Дело в том, что станция работает с более менее постоянной производительностью, в то время как потребление в течение дня очень сильно меняется - утром и вечером оно крайне высокое, ночью очень низкое. Резервуары служат некоторым аккумулятором воды - ночью они наполняются чистой водой, а днем она забирается из них.

Управляется вся станция из центральной диспетчерской. 24 часа в сутки дежурят два человека. У каждого рабочее место с тремя мониторами. Если я правильно запомнил - один диспетчер следит за процессом очистки воды, второй - за всем остальным.

На экранах отображается огромное количество всевозможных параметров и графиков. Наверняка эти данные берутся в том числе с тех приборов, которые были выше на фотографиях.

Крайне важная и ответственная работа! Кстати говоря, на станции практически не было замечено работников. Весь процесс очень сильно автоматизирован.

В заключение - немного сюрра в здании диспетчерской.

Конструкция декоративного характера.

Бонус! Одно из старых зданий, оставшихся со времен самой первой станции. Когда-то она вся была кирпичной и все сооружения выглядели примерно так, однако сейчас все полностью перестроено, сохранилось лишь несколько строений. Кстати, вода в те времена подавалась в город с помощью паровых машин! Чуть подробнее можно почитать (и посмотреть старые фото) в моем

Третий пояс охватывает территорию, окружающую источник, которая оказывает влияние на формирование качества воды в нем. Границы территории третьего пояса определяются исходя из возможности загрязнения источника химическими веществами.

1.8. Водопроводные очистные сооружения

Показатели качества воды. Основным источником цен-

трализованного хозяйственно-питьевого водоснабжения в большинстве регионов Российской Федерации являются поверхностные воды рек, водохранилищ и озер. Количество загрязнений, попадающее в поверхностные источники водоснабжения разнообразно и зависит от профиля и объема промышленных и сельскохозяйственных предприятий, расположенных в районе водосбора.

Качество подземных вод отличается достаточным разнообразием и зависит от условий питания подземных вод, глубины залегания водоносного пласта, состава водовмещающих пород и т. д.

Показатели качества воды подразделяются на физические, химические, биологические и бактериальные. Для определения качества природных вод производят соответствующие анализы в наиболее характерные для данного источника периоды года.

К физическим показателям относят температуру, прозрачность (или мутность), цветность, запах, привкус.

Температура воды подземных источников характеризуется постоянством и находится в пределах 8…12 о С. Температура воды поверхностных источников меняется по сезонам года и зависит от поступления в них подземных и сточных вод, колеблется в пределах 0,1…30 о С. Температура питьевой воды должна находиться в пределах t = 7…10 о C, при t < 7 о C вода плохо очищается, при t > 10 о C происходит размножение в ней бактерий.

Прозрачность (или мутность) характеризуются наличием в воде взвешенных веществ (частиц песка, глины, ила). Концентрацию взвешенных веществ определяют весовым способом.

Предельно допустимое содержание взвешенных веществ в питьевой воде должно быть не более 1,5 мг/л.

Цветность воды обусловлена присутствием в воде гуминовых веществ. Цветность воды измеряется в градусах платиново-кобальтовой шкалы. Дляпитьевой воды допускаетсяцветностьнеболее20о .

Привкусы и запахи природных вод могут быть естественного и искусственного происхождения. Различают три основных вкуса природной воды: соленый, горький, кислый. Оттенки вкусовых ощущений, складываемых из основных, называют привкусами.

К запахам естественного происхождения относят землистый, рыбный, гнилостный, болотный и др. К запахам искусственного происхожденияотносятхлорный, фенольный, запахнефтепродуктови др.

Интенсивность и характер запахов и привкусов природной воды определяют органолептически, с помощью органов чувств человека по пятибалльной шкале. Питьевая вода может иметь запах и привкус интенсивностью не выше 2 баллов.

К химическим показателям относят: ионный состав, жесткость, щелочность, окисляемость, активная концентрация водородных ионов (рН), сухой остаток (общее солесодержание), а также содержание в воде растворенного кислорода, сульфатов и хлоридов, азотосодержащих соединений, фтора и железа.

Ионный состав, (мг-экв/л) – природные воды содержат различные растворенные соли, представленные катионами Ca+2 , Mg+2 , Na+ , K+ и анионами HCO3 – , SO4 –2 , Cl– . Анализ ионного состава позволяет выявить другие химические показатели.

Жесткость воды, (мг-экв/л) – обусловлена наличием в ней солей кальция и магния. Различают карбонатную и некарбонатную жест-

кость, их сумма определяет общую жесткость воды, Жо = Жк + Жнк . Карбонатная жесткость обусловлена содержанием в воде карбо-

натных и бикарбонатных солей кальция и магния. Некарбонатная жесткость обусловлена кальциевыми и магниевыми солями серной, соляной, кремниевой и азотной кислот.

Вода для хозяйственно-питьевых целей должна иметь общую жесткость не более 7 мг-экв/л.

Щелочность воды, (мг-экв/л) – обусловлена присутствием в природной воде бикарбонатов и солей слабых органических кислот.

Общая щелочность воды определяется суммарным содержанием в ней анионов: НСО3 – , СО3 –2 , ОН– .

Для питьевой воды щелочность не лимитируется. Окисляемость воды (мг/л) – обусловлена присутствием в ней ор-

ганических веществ. Окисляемость определяется количеством кислорода, необходимого для окисления органических веществ, находящихся в 1 л воды. Резкое повышение окисляемости воды (более 40 мг/л) свидетельствует о ее загрязнении бытовыми сточными водами.

Активная концентрация водородных ионов воды является показателем, характеризующим степень ее кислотности или щелочности. Количественно она характеризуется концентрацией водородных ионов. На практике активную реакцию воды выражают водородным показателем рН, являющимся отрицательным десятичным логарифмом концентрации водородных ионов: рН = – lg [Н + ]. Показатель величины рН воды составляет 1…14.

Природные воды по величине рН классифицируются: на кислые рН < 7; нейтральные рН = 7; щелочные рН > 7.

Дляпитьевыхцелей вода считаетсяпригоднойпри рН = 6,5…8,5. Солесодержание воды оценивается по сухому остатку (мг/л): пре-

сные100…1000; соленые3000…10000; сильносоленые10000…50000.

В воде источников хозяйственно-питьевого водоснабжения сухой остаток не должен превышать 1000 мг/л. При большей минерализации воды в организме человека наблюдается отложение солей.

Растворенный кислород – попадает в воду при ее контакте с воздухом. Содержание кислорода в воде зависит от температуры и давления.

В артезианских водах растворенного кислорода не встречается,

а в поверхностных водах его концентрация значительна.

В поверхностных водах содержание растворенного кислорода уменьшается при наличии в воде процессов брожения или гниения органических остатков. Резкое снижение содержания растворенного кислорода в воде указывает на ее органическое загрязнение. В природной воде содержание растворенного кислорода должно быть не

менее 4 мг О2 /л.

Сульфаты и хлориды − благодаря своей высокой растворимости содержатся во всех природных водах обычно в виде натриевых, каль-

циевых и магниевых солей: CaSO4 , MgSO4 , CaCI2 , MgCl2 , NaCl.

В питьевой воде содержание сульфатов рекомендуется не выше 500 мг/л, хлоридов – до 350 мг/л.

Азотосодержащие соединения – присутствуют в воде в виде ионов аммония NH4 + , нитритов NO2 – и нитратов NO3 – . Азотосодержащие загрязнения указывают на загрязненность природных вод бытовыми сточными водами и стоками от химических заводов. Отсутствие в воде аммиака и в то же время наличие нитритов и особенно нитратов свидетельствуют о том, что загрязнение водоема произошло давно, и вода

подверглась самоочищению. При высоких концентрациях в воде растворенного кислорода все соединения азота окисляются в ионы NO3 – .

Считается допустимым присутствие нитратов NO3 - в природной воде до 45 мг/л, азота аммонийного NH4 + .

Фтор − в природной воде содержится в количестве до 18 мл/л и более. Однако подавляющее большинство поверхностных источников характеризуется содержанием в воде фтор – иона до 0,5 мг/л.

Фтор является активным в биологическом отношении микроэлементом, количество которого в питьевой воде во избежание кариеса и флюороза, должно быть в пределах 0,7…1,5 мг/л.

Железо – довольно часто встречается в воде подземных источников в основном в виде растворенного бикарбоната двухвалентного железа Fe(HCO3 )2 . В поверхностных водах железо встречается реже и обычно в форме сложных комплексных соединений, коллоидов или тонкодисперсной взвеси. Присутствие железа в природной воде делает ее непригодной для использования в питьевых и производственных целях.

сероводород Н2 S.

Бактериологическими показателями – принято считать общее число бактерий и количество кишечных палочек, содержащихся в 1 мл воды.

Особую важность для санитарной оценки воды имеет определение бактерий группы кишечной палочки. Присутствие кишечной палочки свидетельствует о загрязнении воды фекальными стоками и о возможности попадания в воду болезнетворных бактерий, в частности бактерий брюшного тифа.

Бактериологическими загрязнениями являются бактерии и вирусы из числа патогенных (болезнетворных), живущие и развивающиеся в воде, которые могут вызывать заболевания брюшным тифом,

паратифом, дизентерией, бруцеллезом, инфекционным гепатитом, сибирской язвой, холерой, полиомиелитом.

Существуют два показателя бактериологического загрязнения воды: коли-титр и коли-индекс.

Коли-титр – количество воды в мл, приходящееся на одну кишечную палочку.

Коли-индекс – число кишечных палочек, находящихся в 1 л воды. Для питьевой воды коли-титр должен быть не менее 300 мл, ко- ли-индекс не более 3 кишечных палочек. Общее количество бактерий

в 1 мл воды допускается не более 100.

Принципиальная схема водопроводных очистных сооруже-

ний. Очистные сооружения являются одним из составных элементами систем водоснабжения и тесно связаны с ее другими элементам. Место расположения очистной станции назначают при выборе схемы водоснабжения объекта. Часто очистные сооружения располагают вблизи источника водоснабжения и в незначительном удалении от насосной станции первого подъема.

Традиционные технологии водоподготовки предусматривают обработку воды по классическим двухступенчатой или одноступенчатой схемам, основанным на применении микрофильтрации (в случаях наличия в воде водорослей в количестве более 1000 кл/мл), коагулирования с последующим отстаиванием или осветлением в слое взвешенного осадка, скорого фильтрования или контактного осветления и обеззараживания. Наибольшее распространение в практике водоочистки имеют схемы с самотечным движением воды.

Двухступенчатая схема подготовки воды для хозяйственнопитьевых целей представлена на рис. 1.8.1.

Вода, подаваемая насосной станцией первого подъема, поступает в смеситель, куда вводится раствор коагулянта и где происходит его смешение с водой. Из смесителя вода поступает в камеру хлопьеобразования и последовательно проходит через горизонтальный отстойник и скорый фильтр. Осветленная вода поступает в резервуар чистой воды. В трубу, подающую в резервуар воду, вводится хлор из хлораторной. Необходимый для обеззараживания контакт ее с хлором обеспечивается в резервуаре чистой воды. В некоторых случаях хлор в воду подают дважды: перед смесителем (первичное хлорирование) и после фильтров (вторичное хлорирование). При недостаточной щелочности исходной воды в смеситель одновременно с коагулянтом

подается раствор извести. Для интенсификации процессов коагуляции перед камерой хлопьеобразования или фильтрами вводят флокулянт.

Если исходная вода имеет привкус и запах, перед отстойниками или фильтрами через дозатор вводят активированный уголь.

Реагенты приготавливают в специальных аппаратах, расположенных в помещениях реагентного хозяйства.

От насосов первого

К насосам

Рис. 1.8.1. Схема очистных сооружений по очистке воды для хозяй- ственно-питьевых целей: 1 − смеситель; 2 − реагентное хозяйство; 3 − камера хлопьеобразования; 4 − отстойник; 5 − фильтры; 6 − резервуар чистой воды; 7 − хлораторная

При одноступенчатой схеме очистки воды ее осветление осуществляется на фильтрах или в контактных осветлителях. При очистке маломутных цветных вод применяется одноступенчатая схема.

Рассмотрим более подробно сущность основных процессов водоочистки. Коагулирование примесей называют процесс укрупнения мельчайших коллоидных частиц, происходящих вследствие их взаимного слипания под действием молекулярного притяжения.

Коллоидные частицы, содержащиеся в воде, имеют отрицательные заряды и находятся во взаимном отталкивании, поэтому не оседают. Коагулянт добавленный образует положительно заряженные ионы, что способствует взаимному притяжению противоположно заряженных коллоидов и приводит к образованию укрупненных частиц (хлопьев) в камерах хлопьеобразования.

В качестве коагулянтов применяют сернокислый алюминий, сернокислое закисное железо, полиоксихлорид алюминия.

Процесс коагуляции описывается следующими химическими реакциями

Al2 (SO4 )3 → 2Al3+ + 3SO4 2– .

После введения в воду коагулянта катионы алюминия взаимодействуют с ней

Al3+ + 3H2 O =Al(OH)3 ↓+ 3H+ .

Катионы водорода связываются присутствующими в воде бикарбонатами:

H+ + HCO3 – → CO2 + H2 O.

в воду добавляют соду:

2H+ + CO3 –2 → H2 O + CO2 .

Процесс осветления можно интенсифицировать при помощи высокомолекулярных флокулянтов (праестола, ВПК − 402), которые вводятся в воду после смесителя.

Тщательное перемешивание очищаемой воды с реагентами осуществляется в смесителях различных конструкций. Смешение реагентов с водой должно быть быстрым и осуществляться в течение 1–2 мин. Применяются следующие виды смесителей: дырчатые (рис. 1.8.2), перегородчатые (рис. 1.8.3) и вертикальные (вихревые) смесители.

+β h1

2bл

Рис. 1.8.2. Дырчатый смеситель

Рис. 1.8.3. Перегородчатый смеситель

Смеситель дырчатого типа применяется на станциях обработки воды производительностью до 1000 м3 /ч. Он выполняется в виде железобетонного лотка с вертикальными перегородками, установленными перпендикулярно движению воды и снабженными отверстиями, расположенными в несколько рядов.

Перегородчатый смеситель применяется на водоочистных станциях производительностью не более 500–600 м3 /ч. Смеситель состоит из лотка с тремя поперечными вертикальными перегородками. В первой и третьей перегородках устраивают проходы для воды, размещенные в центральной части перегородок. В средней перегородке предусмотрены два боковых прохода для воды, примыкающих к

стенкам лотка. Благодаря такой конструкции смесителя возникает турбулентность движущегося потока воды, обеспечивающая полное смешение реагента с водой.

На станциях, где вода обрабатывается известковым молоком, применение дырчатых и перегородчатых смесителей не рекомендуется, так как скорость движения воды в этих смесителях не обеспечивает поддержания частиц извести во взвешенном состоянии, что приво-

дит к их осаждению перед перегородками.

На водоочистных станциях наи-

большее применение нашли вертикаль-

ные смесители (рис. 1.8.4). Смеситель

этого типа может быть квадратного или

круглого сечения в плане, с пирами-

дальной или конической нижней частью.

В перегородчатых камерах хлопье-

образования устраивают ряд перегоро-

док, которые заставляют воду менять

Реагенты

направление своего движения либо в

вертикальной, либо в горизонтальной

плоскости, что и обеспечивает необхо-

димое перемешивание воды.

Рис. 1.8.4. Вертикальный (вих-

Для перемешивания воды и обес-

ревой) смеситель: 1 – подача

более полной агломерации

исходной воды; 2 – отвод воды

мелких хлопьев коагулянта в крупные

из смесителя

служат камеры хлопьеобразования. Их

установка необходима перед горизонтальными и вертикальными отстойниками. При горизонтальных отстойниках следует устраивать следующие типы камер хлопьеобразования: перегородчатые, вихревые, встроенные со слоем взвешенного осадка и лопастные; при вертикальных отстойниках – водоворотные.

Удаление взвешенных веществ из воды (осветление) осуществляется путем отстаивания ее в отстойниках. По направлению движения воды отстойники бывают горизонтальные, радиальные и вертикальные.

Горизонтальный отстойник (рис. 1.8.5) представляет собой прямоугольный в плане железобетонный резервуар. В нижней его части имеется объем для накопления осадка, который удаляется по каналу. Для более эффективного удаления осадка дно отстойника выполняют с уклоном. Обрабатываемая вода поступает через распределительный

лоток (или затопленный водослив). Пройдя через отстойник, вода собирается лотком или перфорированной (дырчатой) трубой. В последнее время применяют отстойники с рассредоточенным сбором осветленной воды, устраивая специальные желоба или перфорированные трубы в верхней их части, что позволяет увеличить производительность отстойников. Горизонтальные отстойники применяют на очистных станциях производительностью более 30 000 м3 /сут.

Разновидностью горизонтальных отстойников являются радиальные отстойники, имеющие механизм для сгребания осадка в приямок, располагаемый в центре сооружения. Из приямка осадок откачивается насосами. Конструкция радиальных отстойников сложнее, чем горизонтальных. Применяют их для осветления вод с большим содержанием взвешенных веществ (более 2 г/л) и в системах оборотного водоснабжения.

Вертикальные отстойники (рис. 1.8.6) круглой или квадратной формы в плане имеют коническое или пирамидальное днище для накопления осадка. Эти отстойники применяют при условии предварительного коагулирования воды. Камера хлопьеобразования, в основном водоворотная, располагается в центре сооружения. Осветление воды происходит при восходящем ее движении. Осветленная вода собирается кольцевыми и радиальными лотками. Осадок из вертикальных отстойников выпускают под гидростатическим напором воды без выключения сооружения из работы. Вертикальные отстойники применяют в основном при расходах 3000 м3 /сут.

Осветлители со взвешенным слоем осадка предназначены для предварительного осветления воды перед фильтрованием и только при условии предварительного коагулирования.

Осветлители со взвешенным слоем осадка могут быть разных типов. Одним из наиболее распространенных является осветлитель коридорного типа (рис. 1.8.7), который представляет собой прямоугольный в плане резервуар, разделенный на три секции. Две крайние секции являются рабочими камерами осветлителями, а средняя секция служит осадкоуплотнителем. Осветляемая вода подается у дна осветлителя по дырчатым трубам и равномерно распределяется по площади осветлителя. Затем она проходит через взвешенный слой осадка, осветляется и по дырчатому лотку или трубе, располагаемым на некотором расстоянии над поверхностью взвешенного слоя, отводится на фильтры.

Для глубокого осветления воды применяют фильтры, которые способны улавливать из нее практически все взвеси. Существуют так

же фильтры и для частичной очистки воды. В зависимости от природы и типа фильтрующего материала различают следующие типы фильтров: зернистые (фильтрующий слой − кварцевый песок, антрацит, керамзит, горелые породы, гранодиарит, пенополистирол и др.); сетчатые (фильтрующий слой – сетка с размером ячеек 20–60 мкм); тканевые (фильтрующий слой – хлопчатобумажные, льняные, суконные, стеклянные или капроновые ткани); намывные (фильтрующий слой − древесная мука, диатомит, асбестовая крошка и другие материалы, намываемые в виде тонкого слоя на каркас из пористой керамики, металлической сетки или синтетической ткани).

Рис. 1.8.5. Горизонтальный отстойник: 1 – подача исходной воды; 2 – отвод очищенной воды; 3 – отвод осадка; 4 – распределительные карманы; 5 – распределительные решетки; 6 – зона накопления осадка;

7 – зона отстаивания

Рис. 1.8.6. Вертикальный отстойник: 1 – камера хлопьеобразования; 2 – сегнетово колесо с насадками; 3 – гаситель; 4 – подача исходной воды (из смесителя); 5 – сборный желоб вертикального отстойника; 6 – труба для отвода осадка из вертикального отстойника; 7 – отвод

воды из отстойника

Зернистые фильтры применяют для очистки хозяйственнопитьевой и технической воды от тонкодисперсной взвеси и коллоидов; сетчатые – для задержания грубодисперсных взвешенных и плавающих частичек; тканевые – для очистки маломутных вод на станциях небольшой производительности.

Для очистки воды в коммунальном водоснабжении применяются зернистые фильтры. Важнейшей характеристикой работы фильтров является скорость фильтрования, в зависимости от которой фильтры подразделяют на медленные (0,1–0,2), скорые (5,5–12) и сверхскоро-

Рис. 1.8.7. Коридорный осветлитель со взвешенным осадком с вертикальным осадкоуплотнителем: 1 – коридоры-осветлители; 2 – осадкоуплотнитель; 3 – подача исходной воды; 4 – сборные карманы для отвода осветленной воды; 5 – отвод осадка из осадкоуплотнителя; 6 – отвод осветленной воды из осадкоуплотнителя; 7 – осадкоприемные

окна с козырьками

Наибольшее распространение получили скорые фильтры, на которых осветляется предварительно коагулированная вода (рис. 1.8.8).

Вода, поступающая на скорые фильтры после отстойника или осветлителя, не должна содержать взвешенных веществ более 12–25 мг/л, а послефильтрованиямутностьводынедолжна превышать1,5 мг/л

Контактные осветлители по устройству аналогичны скорым фильтрам и являются их разновидностью. Осветление воды, основанное на явлении контактной коагуляции, происходит при движении ее снизу вверх. Коагулянт вводят в обрабатываемую воду непосредственно перед ее фильтрованием через песчаную загрузку. За короткое время до начала фильтрования образуются лишь мельчайшие хлопья взвесей. Дальнейший процесс коагуляции происходит на зернах загрузки, к которым прилипают ранее образовавшиеся мельчайшие хлопья. Этот процесс, называемый контактной коагуляцией, происходит быстрее, чем обычная коагуляция в объеме, и требует меньшего количества коагулянта. Контактные осветлители промывают путем

Обеззараживание воды. В современных очистных сооружениях обеззараживание воды производится во всех случаях, когда источник водоснабжения ненадежен с санитарной точки зрения. Обеззараживание может быть осуществлено хлорированием, озонированием и бактерицидным облучением.

Хлорирование воды. Способ хлорирования является наиболее распространенным способом обеззараживания воды. Обычно для хлорирования используют жидкий или газообразный хлор. Хлор обладает высокой дезинфицирующей способностью, относительно стоек и длительное время сохраняет активность. Он легко дозируется и контролируется. Хлор действует на органические вещества, окисляя их, и на бактерии, которые погибают в результате окислений веществ, входящих в состав протоплазмы клеток. Недостатком обеззараживания воды хлором является образование токсичных летучих галогенорганических соединений.

Одним из перспективных способов хлорирования воды является использование гипохлорита натрия (NaClO), получаемого электролизом 2–4 % раствора поваренной соли.

Диоксид хлора (ClO2 ) позволяет уменьшить возможность образования побочных хлорорганических соединений. Бактерицидность диоксида хлора более высокая чем хлора. Особенно эффективен диоксид хлора при обеззараживании воды с высоким содержанием органических веществ и аммонийных солей.

Остаточная концентрация хлора в питьевой воде не должна превышать 0,3–0,5 мг/л

Взаимодействие хлора с водой осуществляется в контактных резервуарах. Продолжительность контакта хлора с водой до поступления ее к потребителям должна быть не менее 0,5 ч.

Бактерицидное облучение . Бактерицидное свойство ультрафиолетовых лучей (УФ) обусловлено действием на клеточный обмен и особенно на ферментные системы бактериальной клетки, кроме того, под действием УФ-излучения происходят фотохимические реакции в структуре молекул ДНК и РНК, приводящими к их необратимым повреждениям. УФ-лучи уничтожают не только вегетативные, но и споровые бактерии, тогда как хлор действует только на вегетативные. К достоинствам УФ-излучения следует отнести отсутствие какого-либо воздействия на химический состав воды.

Для обеззараживания воды таким способом ее пропускают через установку, состоящую из ряда специальных камер, внутри которых размещены ртутно-кварцевые лампы, заключенные в кварцевые кожухи. Ртутно-кварцевые лампы выделяют ультрафиолетовое излучение. Производительность такой установки в зависимости от числа камер составляет 30…150 м3 /ч.

Эксплуатационные расходы на обеззараживание воды облучением и хлорированием примерно одинаковы.

Однако следует отметить, что при бактерицидном облучении воды затруднен контроль эффекта обеззараживания, тогда как при хлорировании этот контроль осуществляется достаточно просто по наличию остаточного хлора в воде. Помимо этого данный способ невозможно использовать для обеззараживания воды с повышенной мутностью и цветностью.

Озонирование воды. Озон применяется с целью глубокой очистки воды и окисления специфических органических загрязнений антропогенного происхождения (фенолов, нефтепродуктов, СПАВ, аминов, и др.). Озон позволяет улучшить протекание процессов коагуляции, сократить дозу хлора и коагулянта, уменьшить концентра-

цию ЛГС, повысить качество питьевой воды по микробиологическими и органическим показателям.

Озон наиболее целесообразно применять совместно с сорбционной очисткой на активных углях. Без озона во многих случаях невозможно получить воду, соответствующую СанПиН. В качестве основных продуктов реакции озона с органическими веществами называют такие соединения, как формальдегид и ацетальдегид, содержание которых нормируется в питьевой воде на уровне 0,05 и 0,25 мг/л соответственно.

Озонирование основано на свойстве озона разлагаться в воде с образованием атомарного кислорода, разрушающего ферментные системы микробных клеток и окисляющего некоторые соединения. Количество озона, необходимое для обеззараживания питьевой воды, зависит от степени загрязнения воды и составляет не более 0,3–0,5 мг/л. Озон токсичен. Предельно допустимое содержание этого газа в воздухе производственных помещений 0,1 г/м3 .

Обеззараживание воды озонированием по санитарным и техническим нормам является наилучшим, но сравнительно дорогим. Установка для озонирования воды представляет собой сложный и дорогой комплекс механизмов и оборудования. Существенным недостатком озонаторной установки является значительное потребление электроэнергии для получения из воздуха очищенного озона и подачи его в обрабатываемую воду.

Озон, являясь сильнейшим окислителем, может применяться не только для обеззараживания воды, но и для ее обесцвечивания, а также для устранения привкусов и запахов.

Доза озона, необходимая для обеззараживания чистой воды, не превышает 1 мг/л, для окисления органических веществ при обесцвечивании воды – 4 мг/л.

Продолжительность контакта обеззараживаемой воды с озоном составляет примерно 5 мин.

Блочно-модульные станции водоподготовки ВОС предназначены для приема и очистки артезианской воды до норм СанПиН 2.1.41074-01 «Питьевая вода». Производительность станций составляет от 50 до 800 м³/сут. В комплект поставки входит насосная станция подачи воды потребителю. Поставка резервуаров чистой воды ЕГС осуществляется по отдельному запросу.

Техническое описание станций водоподготовки ВОС производительностью от 50 до 800 м 3 /сут.:

Скачать pdf (137 КБ)

Конструкция блочно-модульных станций водоподготовки ВОС

Станции водоподготовки ВОС представляют собой одноэтажные металлические блочно-модульные здания с двускатной крышей. Каркас блоков станций выполняется из стальных квадратных труб 100х100х4 и швеллеров №10. Крыша двускатная, выполняется по балкам из швеллеров №10. Ограждающими конструкциями зданий являются стены и кровля комплексной конструкции:

  1. Внутренняя облицовка стен и потолка выполняется из металлопрофиля с полимерным покрытием белого цвета по рамам из равнополочного уголка.
  2. Стены и крыша утепляются негорючим материалом - плитами из минеральной ваты марки «Термостена».
  3. Наружная отделка стен выполняется сэндвич-панелями толщиной 50-150 мм. Покрытие кровли - сэндвич-панели толщиной до 150 мм.

Полы выполняются из листа алюминиевого рифленого марки АМг2НР δ=4 мм. Во всех станциях предусматриваются электроосвещение, система отопления и вентиляции, система автоматизации технологического процесса.

Станции ВОС устанавливаются на железобетонную фундаментную плиту (конструкция плиты определяется расчетом) и крепится сваркой к закладным деталям.

Вокруг станций предусматривается отмостка шириной 1 м. Отвод воды с кровли наружный организуется посредством водосборных желобов и труб.

Архитектурное решение станции ВОС-400


Технологические характеристики блочно-модульных станций водоподготовки ВОС

Привязка станции в проект осуществляется только после предоставления заказчиком протокола анализа исходной воды.

При наличии показателей исходной воды, не указанных в приведенной выше таблице и превышающих нормативы СанПиН 2.1.41074-01 «Питьевая вода», требуется корректировка технологии очистки и состава оборудования.

Технические характеристики блочно-модульных станций водоподготовки ВОС

Наименование параметра ВОС-50 ВОС-100 ВОС-200 ВОС-400 ВОС-800
Суточная производительность станции не более, м 3 /сут. 50 100 200 400 800
Часовая производительность станции, м 3 /час 2,1 4,2 8,3 17 33,3
Характеристика насосной станции подачи воды потребителю, расход м 3 /час (напор, м) 11,7
(50)
13,7
(51)
27
(58)
50
(50)
140
(30)
Габаритные размеры станции, не более (длина х ширина х высота), м 6х6х3 6х6х3 6х6х3 9х6х3 9х9х3
Количество блок-модулей, шт./габариты, м 2 шт.
6х3
2 шт.
6х3
2 шт.
6х3
2 шт.
9х3
3 шт.
9х3

Эксплуатационные характеристики блочно-модульных станций водоподготовки ВОС

Наименование параметра ВОС-50 ВОС-100 ВОС-200 ВОС-400 ВОС-800
Установленная мощность* электрооборудования, кВт 23,9 27,2 40,3 59,3 78,7
Установленная мощность* электрооборудования (без отопительного оборудования), кВт 12,4 15,7 28,8 47,8 67,2
Потребляемая мощность* на технологические нужды станции, кВт 4,6 6,1 10,8 19,1 31
Интенсивность промывки фильтра, л/м 2 *с 16 16 16 16 16
Расход воды для промывки фильтра, м 3 /час 6 14 27 39,2 39,2
Объем воды на одну промывку фильтра (6 мин), м 3 0,6 1,4 2,7 3,9 3,9
Расход гипохлорита натрия, л/мес. 8,6 17,2 34,4 68,8 137,6

* - с учетом насосной станции подачи воды потребителю.

Описание ступеней очистки сточных вод в станциях водоподготовки ВОС

Природная вода – это сложная система, содержащая множество разнообразных минеральных и органических примесей.

Качество воды и пригодность ее использования для различных целей оценивается по комплексу показателей. При использовании для целей питьевого водоснабжения воды подземных источников, основными регламентируемыми показателями являются: содержание в воде общего железа и марганца, перманганатная окисляемость, цветность, мутность и наличие патогенных микроорганизмов.

Доведение этих показателей до нормативов качества питьевой воды осуществляется на станциях водоподготовки ВОС блочно-модульного типа.

Технологическая схема станции водоподготовки включает следующие основные элементы:

  • приемный резервуар;
  • фильтры осветления;
  • сорбционный фильтр;
  • резервуар чистой воды;
  • узел обеззараживания.

Тип применяемого оборудования зависит от состава подземных вод, подаваемых на станцию водоподготовки от источника водоснабжения.

Исходная подземная вода от скважин подается в резервуар приема воды (РПВ), размещаемый внутри станции. Подача в РПВ осуществляется путем свободного излива. В результате контакта воды с кислородом воздуха происходит окисление и выделение из воды в виде нерастворимых примесей соединений железа и марганца.

Из резервуара с помощью насосов вода подается на очистку.

Для удаления из очищаемых вод нерастворенных примесей используется фильтр марки FE(T) с загрузкой на основе гидроантрацита. Данный материал обладает высокой грязеемкостью и при этом малой плотностью по сравнению с другими фильтрующими материалами. Благодаря малой плотности, на промывку данного фильтрующего материала требуется меньший расход воды.

Для удаления из очищаемых вод органических веществ и улучшения органолептических свойств воды (вкус, запах, цвет) применяется фильтр марки CA(T). В качестве фильтрующей загрузки в фильтрах серии СА применяется кокосовый активированный уголь. Активированный уголь изготовлен из скорлупы кокосовых орехов, имеет высокую сорбционную способность и высокую механическую прочность.

Подача воды на промывку фильтров предусматривается насосами подачи воды потребителю в часы минимального водопотребления. Вода после промывки фильтров отводится во внутриплощадочную канализацию. После сорбционных фильтров для предотвращения выноса фильтрующего материала устанавливаются барьерные фильтры тонкой очистки.

Очищенная вода поступает в резервуары чистой воды (РЧВ). Емкость РЧВ обеспечивает хранение:

  • регулирующего объема воды;
  • неприкосновенного пожарного запаса;
  • гостиничных и туристических комплексов;
  • объема воды на промывку фильтров.

Подача очищенной воды на обеззараживание и далее потребителю производится насосами сухой установки.

Обеззараживанием воды называется процесс уничтожения находящихся там микроорганизмов. До 98 % бактерий задерживается в процессе очистки воды. Но среди оставшихся бактерий, а также среди вирусов могут находиться патогенные (болезнетворные) микробы, для уничтожения которых нужна специальная обработка воды

Процесс обеззараживания очищенной воды происходит перед подачей воды в сеть на ультрафиолетовой установке, оборудованной датчиком ультрафиолетового излучения и его мощности.

Для периодической дезинфекции резервуара чистой воды и водопроводных сетей предусматривается дозирование в воду раствора гипохлорита натрия.

Установка приготовления и дозирования обеззараживающего раствора включает в себя расходный бак и насос-дозатор. Дозирование раствора реагента предусматривается в трубопровод забора воды из РЧВ и в трубопровод подачи воды в РЧВ.

В результате реализации предложенной технологической схемы обработки исходных подземных вод качество очищенной питьевой воды обеспечит требования СанПиН 2.1.4.1074-01 "Питьевая вода".

В связи с ростом объемов водопотребления и недо-статочностью источников подземных вод для целей водо-снабжения используются источники поверхностных вод, забираемых из рек и водоемов.

К качеству питьевой воды предъявляются требования в соответствии с нормами действующего стандарта. Вы-сокие требования предъявляются также и к качеству воды, идущей на технологические цели промышленных предприятий, так как от этого во многом зависит нор-мальное функционирование промышленных агрегатов и оборудования цехов.

Качество воды в источниках водоснабжения часто не соответствует предъявляемым требованиям, поэтому воз-никает задача его улучшения. Улучшение качества при-родной воды для хозяйственно-питьевых нужд и техно-логических целей достигается различными специальными методами ее обработки (очистки). В целях улучше-ния качества питьевой воды и ее очистки в составе современных водопроводов возводятся специальные ком-плексы очистных сооружений , объединяемые в водо-очистные станции .

Сточные воды также требуют очистки с целью устра-нения вредного их воздействия на внешнюю среду (водоемы, почву, подземные воды, воздух) и через нее на людей, животных, рыб, растения. Очистка сточных вод является одним из важнейших мероприятий по ох-ране природы, рек и водоемов от загрязнения. Она про-изводится на специальных комплексах канализационных очистных сооружений . Эти сооружения не только очи-щают воды от загрязнений, но и улавливают полезные вещества для использования их на основном производстве (в промышленности) или для использования как сырья в других производствах.

Необходимая степень очистки отводимых сточных вод, сбрасываемых в водоемы РФ, регламентируется «Правилами охраны поверхностных вод от загрязнения сточными водами» и «Основами водного законодатель-ства РФ».

В практике строительства возводятся комплексы очистных сооружений двух основных типов - водопро-водные и канализационные . Каждый из указанных типов очистных сооружений имеет свои разновидности, а так-же специфические особенности как по составу и устрой-ству отдельных сооружений, так и по технологическим процессам, происходящим в них.

Метод обра-ботки воды и состав водопроводных очистных сооруже-ний зависят от качества исходной воды, требований, предъявляем их к качеству питьевой воды, и принятой технологической схемы ее очистки.

Технологические процессы очистки воды включают ее осветление , обесцвечивание и обеззараживание . При этом вода коагулируется, отстаивается и фильтруется, а также проходит обработку хлором. Если качество ис-ходной воды позволяет отказаться от некоторых техно-логических процессов ее обработки, соответственно сокращается комплекс сооружений.

Изучение технологических схем очистки питьевой воды показывает, что основными методами осветления и обесцвечивания воды на водопроводных очистных со-оружениях являются отстаивание и фильтрование с предварительном обработкой воды реагентами (коагу-лянтами). Для отстаивания воды используются в основ-ном горизонтальные (реже вертикальные) отстойники или осветлители со взвешенным осадком, а для филь-трования - фильтры с различными видами фильтрую-щей загрузки или контактные осветлители.

В практике водопроводного строительства в нашей стране наибольшее распространение получили водоочист-ные сооружения , запроектированные, но технологической схеме, предусматривающей в качестве основных очист-ных сооружений горизонтальные отстойники и скорые фильтры.

Принятая единая технологическая схема очистки питьевой воды предопределила практически одинаковый состав основных и вспомогательных сооружений. Так, например, во все комплексы водоочистных станций , не-зависимо от их производительности и типа, входят сле-дующие сооружения: реагентное хозяйство со смесите-лем , камеры реакции ( хлопьеобразование ), горизон-тальные отстойники или осветлители , фильтры, резер-вуары для чистой воды , насосная станция II подъема с электроподстанцией, а также объекты подсобно-вспомо-гательного (производственного), административно-технического и культурно-бытового назначения.

. , как и водопровода, - это сложные комплексы инженерных сооружений, взаимо-связанных технологическим процессом очистки сточных вод. На очистных сооружениях сточные воды подвер-гаются механической, химической и биохимической (био-логической) очистке.

В процессе механической очистки из жидкой фазы сточных вод отделяются взвешенные вещества и гру-бые механические примеси путем процеживания, отстаи-вания и фильтрования. В некоторых случаях механиче-ская очистка является окончательной. Но чаще всего она служит лишь подготовкой для дальнейшей, например, биохимической очистки.

В комплекс очистных сооружений, предназначенных для механической очистки бытовых сточных вод , вхо-дят: решетки, предназначенные для задержания круп-ных веществ органического и минерального происхож-дения; песколовки для выделения тяжелых минеральных загрязнений (главным образом леска); отстойники для выделения осаждающихся веществ (в основном органи-ческих); хлораторная установка с контактными резер-вуарами, в которых происходит контакт осветленной сточной воды с хлором в целях уничтожения болезне-творных бактерий. В результате обработки поступаю-щих сточных вод на указанных сооружениях они после их дезинфекции могут быть отведены в водоем.

Схема химической очистки сточных вод отличается от механической введением перед отстойниками смеси-теля и реагентного хозяйства. При этом обрабатываемая сточная вода после решеток и песколовки поступает в смеситель, где к ней добавляется реагент для коагулирования, а затем в отстойник для осветления. Сточная вода из отстойника выпускается либо прямо в водоем, либо сперва на фильтр для дополнительного осветления, а потом в водоем. Сооружения для обработки осадка при химическое очистке такие же. как и при механиче-ской.

Биохимическая очистка сточных вод , в зависимости от местных условий, обычно осуществляется на трех ос-новных схемах сооружений: на полях орошения или по-лях фильтрации, на биофильтрах и в аэротенках. При первой схеме сточная водя, пройдя через решетки, по-ступает в песколовки и затем в отстойники для осветле-ния и дегельминтизации, откуда она направляется на поля орошения или поля фильтрации и затем в водоем. При второй схеме сточная вода сначала проходит через сооружения механической очистки и предварительной аэрации (преаэраторы), далее она поступает на био-фильтры, а затем во вторичный отстойник для выделе-ния из очищенной воды веществ, выносимых ил биофиль-тров. Очистка заканчивается дезинфекцией сточных вод перед спуском в водоем. При третьей схеме предвари-тельная очистка сточной воды производится на решет-ках, песколовках, преаэраторах и в отстойниках. После-дующая их очистка производится в аэротенках, затем во вторичных отстойниках и заканчивается дезинфек-цией, после чего вода сбрасывается в водоем. Выбор типа сооружений для биохимической очистки сточных вод производится в зависимости от ряда факторов, в том числе; требуемой степени очистки сточных вод, раз-мера площади под очистные сооружения (большая пло-щадь требуется для устройства полей орошения и го-раздо меньшая для аэротенков), характера грунтов, рельефа площади и др. Схему очистных сооружений выбирают с учетом экономических показателей - строи-тельной и эксплуатационной стоимости сооружений.







2024 © kubanteplo.ru.