Управление реле от микроконтроллера. Как безопасно подключать внешние устройства к микроконтроллеру? Подключение нагрузки через электромагнитное реле


О какой нагрузке идет речь? Да о любой — релюшки, лампочки, соленоиды, двигатели, сразу несколько светодиодов или сверхмощный силовой светодиод-прожектор. Короче, все что потребляет больше 15мА и/или требует напряжения питания больше 5 вольт.

Вот взять, например, реле. Пусть это будет BS-115C. Ток обмотки порядка 80мА, напряжение обмотки 12 вольт. Максимальное напряжение контактов 250В и 10А.

Подключение реле к микроконтроллеру это задача которая возникала практически у каждого. Одна проблема — микроконтроллер не может обеспечить мощность необходимую для нормальной работы катушки. Максимальный ток который может пропустить через себя выход контроллера редко превышает 20мА и это еще считается круто — мощный выход. Обычно не более 10мА. Да напряжение у нас тут не выше 5 вольт, а релюшке требуется целых 12. Бывают, конечно, реле и на пять вольт, но тока жрут больше раза в два. В общем, куда реле не целуй - везде жопа. Что делать?

Первое что приходит на ум — поставить транзистор. Верное решение — транзистор можно подобрать на сотни миллиампер, а то и на амперы. Если не хватает одного транзистора, то их можно включать каскадами, когда слабый открывает более сильный.

Поскольку у нас принято, что 1 это включено, а 0 выключено (это логично, хотя и противоречит моей давней привычке, пришедшей еще с архитектуры AT89C51), то 1 у нас будет подавать питание, а 0 снимать нагрузку. Возьмем биполярный транзистор. Реле требуется 80мА, поэтому ищем транзистор с коллекторным током более 80мА. В импортных даташитах этот параметр называется I c , в наших I к. Первое что пришло на ум — КТ315 — шедевральный совковый транзистор который применялся практически везде:) Оранжевенький такой. Стоит не более одного рубля. Также прокатит КТ3107 с любым буквенным индексом или импортный BC546 (а также BC547, BC548, BC549). У транзистора, в первую очередь, надо определить назначение выводов. Где у него коллектор, где база, а где эмиттер. Сделать это лучше всего по даташиту или справочнику. Вот, например, кусок из даташита:

Если смотреть на его лицевую сторону, та что с надписями, и держать ножками вниз, то выводы, слева направо: Эмиттер, Колектор, База.

Берем транзистор и подключаем его по такой схеме:

Коллектор к нагрузке, эмиттер, тот что со стрелочкой, на землю. А базу на выход контроллера.

Транзистор это усилитель тока, то есть если мы пропустим через цепь База-Эмиттер ток, то через цепь Колектор-Эмиттер сможет пройти ток равный входному, помноженному на коэффициент усиления h fe .
h fe для этого транзистора составляет несколько сотен. Что то около 300, точно не помню.

Максимальное напряжение вывода микроконтроллера при подаче в порт единицы = 5 вольт (падением напряжения в 0.7 вольт на База-Эмиттерном переходе тут можно пренебречь). Сопротивление в базовой цепи равно 10000 Ом. Значит ток, по закону Ома, будет равен 5/10000=0.0005А или 0.5мА — совершенно незначительный ток от которого контроллер даже не вспотеет. А на выходе в этот момент времени будет I c =I be *h fe =0.0005*300 = 0.150А. 150мА больше чем чем 100мА, но это всего лишь означает, что транзистор откроется нараспашку и выдаст максимум что может. А значит наша релюха получит питание сполна.

Все счастливы, все довольны? А вот нет, есть тут западло. В реле же в качестве исполнительного элемента используется катушка. А катушка имеет неслабую индуктивность, так что резко оборвать ток в ней невозможно. Если это попытаться сделать, то потенциальная энергия, накопленная в электромагнитом поле, вылезет в другом месте. При нулевом токе обрыва, этим местом будет напряжение — при резком прерывании тока, на катушке будет мощный всплеск напряжения, в сотни вольт. Если ток обрывается механическим контактом, то будет воздушный пробой — искра. А если обрывать транзистором, то его просто напросто угробит.

Надо что то делать, куда то девать энергию катушки. Не проблема, замкнм ее на себя же, поставив диод. При нормальной работе диод включен встречно напряжению и ток через него не идет. А при выключении напряжение на индуктивности будет уже в другую сторону и пройдет через диод.

Правда эти игры с бросками напряжения гадским образом сказываются на стабильности питающей сети устройства, поэтому имеет смысл возле катушек между плюсом и минусом питания вкрутить электролитический конденсатор на сотню другую микрофарад. Он примет на себя большую часть пульсации.

Красота! Но можно сделать еще лучше — снизить потребление. У реле довольно большой ток срывания с места, а вот ток удержания якоря меньше раза в три. Кому как, а меня давит жаба кормить катушку больше чем она того заслуживает. Это ведь и нагрев и энергозатраты и много еще чего. Берем и вставляем в цепь еще и полярный конденсатор на десяток другой микрофарад с резистором. Что теперь получается:

При открытии транзистора конденсатор С2 еще не заряжен, а значит в момент его заряда он представляет собой почти короткое замыкание и ток через катушку идет без ограничений. Недолго, но этого хватает для срыва якоря реле с места. Потом конденсатор зарядится и превратится в обрыв. А реле будет питаться через резистор ограничивающий ток. Резистор и конденсатор следует подбирать таким образом, чтобы реле четко срабатывало.
После закрытия транзистора конденсатор разряжается через резистор. Из этого следует встречное западло — если сразу же попытаться реле включить, когда конденсатор еще не разрядился, то тока на рывок может и не хватить. Так что тут надо думать с какой скоростью у нас будет щелкать реле. Кондер, конечно, разрядится за доли секунды, но иногда и этого много.

Добавим еще один апгрейд.
При размыкании реле энергия магнитного поля стравливается через диод, только вот при этом в катушке продолжает течь ток, а значит она продолжает держать якорь. Увеличивается время между снятием сигнала управления и отпаданием контактной группы. Западло. Надо сделать препятствие протеканию тока, но такое, чтобы не убило транзистор. Воткнем стабилитрон с напряжением открывания ниже предельного напряжения пробоя транзистора.
Из куска даташита видно, что предельное напряжение Коллектор-База (Collector-Base voltage) для BC549 составляет 30 вольт. Вкручиваем стабилитрон на 27 вольт — Profit!

В итоге, мы обеспечиваем бросок напряжения на катушке, но он контроллируемый и ниже критической точки пробоя. Тем самым мы значительно (в разы!) снижаем задержку на выключение.

Вот теперь можно довольно потянуться и начать мучительно чесать репу на предмет того как же весь этот хлам разместить на печатной плате… Приходится искать компромиссы и оставлять только то, что нужно в данной схеме. Но это уже инженерное чутье и приходит с опытом.

Разумеется вместо реле можно воткнуть и лампочку и соленоид и даже моторчик, если по току проходит. Реле взято как пример. Ну и, естественно, для лампочки не потребуется весь диодно-конденсаторный обвес.

Пока хватит. В следующий раз расскажу про Дарлингтоновские сборки и MOSFET ключи.

Что нужно для того, чтобы стать профессиональным разработчиком программ для микроконтроллеров и выйти на такой уровень мастерства, который позволит с лёгкостью найти и устроиться на работу с высокой зарплатой (средняя зарплата программиста микроконтроллеров по России на начало 2017 года составляет 80 000 рублей). ...

Как вы понимаете, мощную и/или высоковольтную нагрузку (такую как лампы накаливания, электродвигатели, электронагревательные элементы и т.п.) нельзя напрямую подключить к . Потому что выходы микроконтроллера:

  1. Не рассчитаны на работу с высоким напряжением.
  2. Не рассчитаны на управление мощной нагрузкой (нагрузкой, которая потребляет большой ток).
  3. Не имеют гальванической развязки (иногда это важно даже при управлении слаботочной нагрузкой).

Из этого следует, что для управления с помощью микроконтроллера мощной нагрузкой необходимо применять какие-то хитрые способы сопряжения выходов микроконтроллера с нагрузкой. Этих способов несколько:

  1. Подключение нагрузки через твёрдотельное реле.

Более подробно эти виды подключения будут рассмотрены в соответствующих статьях. А здесь я буду говорить только о достоинствах и недостатках этих способов.

Подключение нагрузки через оптрон

Итак, один из наиболее простых способов - это подключение через оптрон (фотосемистор, фототиристор и т.п.).

Этот способ подходит для управления активной нагрузкой, такой как лампы накаливания, электронагреватели и т.п. Его преимуществами являются наличие гальванической развязки, относительная простота подключения и дешевизна оптронов. Серьёзный недостаток, пожалуй, один. Но довольно существенный - при управлении индуктивной нагрузкой, такой как электродвигатели, симистор/тиристор оптрона может самопроизвольно открыться (без команды от микроконтроллера). Так что для такого случая придётся принимать дополнительные меры, усложняющие устройство на микроконтроллере .

Подключение нагрузки через транзистор

Тоже выполняется довольно просто. Стоимость обычных транзисторов тоже относительно невелика. Это плюс.

Минусы - можно управлять только нагрузкой постоянного тока (речь идёт о дешёвых биполярных транзисторах). Причём напряжение нагрузки тоже по возможности должно быть небольшим. Потому что высоковольтные транзисторы стоят уже не очень дёшево (а некоторые и очень дорого).

Ещё один недостаток - отсутствие гальванической развязки между нагрузкой и .

И, также как в случае с оптроном - надо хотя бы немного разбираться в электронике, чтобы подобрать правильный транзистор и рассчитать схему включения самого транзистора и дополнительных резисторов.

Подключение нагрузки через электромагнитное реле

Подключить электромагнитное реле проще простого. Но это только на первый взгляд. На самом деле тоже есть особенности, которые надо знать (расскажу о них в соответствующей статье). Иначе можно просто вывести из строя выход микроконтроллера.

Преимущества электромагнитного реле:

  1. Низкая цена.
  2. Можно управлять нагрузкой практически любой мощности и напряжения.
  3. Можно управлять нагрузкой как постоянного, так и переменного тока.
  4. Можно управлять как активной, так и индуктивной нагрузкой без каких-либо дополнительных ухищрений.
  5. Есть гальваническая развязка между выходом микроконтроллера и нагрузкой.
  6. Не требуется особых познаний в электронике, чтобы подобрать реле под нагрузку.

Недостатки:

  1. Необходимо принимать дополнительные меры для защиты выхода микроконтроллера.
  2. Относительно низкое быстродействие (реле переключается существенно медленнее, чем полупроводниковые приборы - иногда это важно).
  3. Большие габариты и вес. Хотя современные реле довольно миниатюрны, их размеры и вес всё-равно больше, чем размеры полупроводниковых приборов.
  4. Относительно низкий ресурс. Так как в реле имеются контакты, то ресурс реле ниже, чем у полупроводников. Из-за искрения контакты быстрее выходят из строя. Хотя, как показывает практика, качественные реле могут работать десятки лет без поломок.

Подключение нагрузки через твёрдотельное реле

Твёрдотельное реле - это полупроводниковый прибор, который объединяет в себе, например, фотосимистор и всю необходимую для его управления обвязку. То есть твёрдотельное реле можно просто подключить к выходу микроконтроллера, не заботясь о том, какое сопротивление должны иметь гасящие резисторы и т.п.

Однако использовать твёрдотельные реле сложнее, чем обычные реле. Потому как у твёрдотельных реле довольно много разных характеристик, в которых надо разбираться. Впрочем, изучить эту тему несложно.

Недостаток у твёрдотельного реле, пожалуй, один - это высокая цена. Твёрдотельное реле, как правило, стоит в 5...10 раз дороже обычного электромагнитного реле (то есть это сотни и тысячи рублей за штуку).

Выводы

Какой прибор в каких случаях использовать - определяется из задачи и условий эксплуатации устройства, которое вы проектируете. Здесь всё довольно непросто - придётся вам разбираться самим (я пока не готов всё это описывать))).

Если вы немного запутались и не можете выбрать, что же использовать в вашем устройстве, то совет могу дать такой:

  1. Для активной нагрузки постоянного тока низкого напряжения (до 50 В) используйте транзисторы.
  2. Для любых нагрузок переменного тока и для мощных высоковольтных нагрузок постоянного тока используйте электромагнитные реле.
  3. Ну а вообще думайте, что и как использовать, в зависимости от технических требований к устройству.

Если вы только начинаете разрабатывать устройства, то это вполне пригодный совет. Ну а когда наберётесь опыта, то уже сами сможете определять, какие и когда приборы использовать.


Для индикации уровня сигнала или постоянного напряжения, тока частоиспользуют поликомпараторные микросхемы вроде AN6884, КА2284, ВА6124 или многие другие аналогичные. Такая микросхема представляет собой набор компараторов, с выходами на светодиоды, а так же измерительную схему и схему предварительного усиления, детектора.

На рисунке 1 показана типовая схема включения микросхем AN6884, КА2284, ВА6124. Деталей минимум, и получаем пятипороговый индикатор уровня. Светодиоды работают по принципу «градусника», то есть, если их расположить последовательно в линию и признать это все как непрерывную линию, то чем больше сигнал, тем длиннее линия (тем больше светодиодов горит).

Но, бывают случае, когда необходимо не только визуально определить уровень сигнала, но и предпринять какие-то меры, если уровень сигнала достиг некоторого уровня. Например, при зажигании светодиода HL5 нужно чтобы включилось электромагнитное реле и своими контактами включило некую нагрузку или устройство.

Схема подключения реле

На рисунке 2 показано как можно подключить обмотку реле. Но сначала обратите внимание на рисунок 1 - все светодиоды подключены к выходам микросхемы непосредственно, без каких-либо токоограничительных резисторов. Хотя, в литературе встречаются схемы и с токоограничительными резисторами.

На самом деле в токоограничительных резисторах, касательно микросхем AN6884, КА2284, ВА6124 и их аналогов, нет никакой необходимости, потому что внутри микросхемы, на каждом выходе есть схема ограничения тока. Поэтому, напряжение между выходом и положительной шиной питания не бывает больше прямого напряжения падения на светодиоде.

Рис. 1. Типовая схема включения микросхем AN6884, КА2284, ВА6124.

Рис. 2. Схема подключения реле к каналу индикатора сигнала.

Но такого небольшого напряжения недостаточно ни для обмотки реле, а зачастую и даже для открывания транзисторного ключа. Однако, повысить напряжение между выходом и шиной питания можно просто включением дополнительного токоограничительного резистора (R2 на рисунке 2). Благодаря ему напряжение на промежутке от выхода микросхемы до шины питания увеличивается. Изменяя сопротивление этого резистора можно выставить необходимое напряжение.

На рисунке 2 показана схема управления обмоткой реле - его включением, при включении светодиода HL5. При включении HL5 напряжение на выводе 1 относительно общего минуса падает, но относительно шины питания увеличивается. Достигает уровня, достаточного для открывания транзистора VT1. Он открывается, и вслед за ним открывается более мощный транзистор VT2. А в его коллекторной цепи включена обмотка реле К1.

Напряжение питания реле может отличаться от напряжения питания микросхемы. Точно таким же образом, можно соединить реле и с любым другим выходом микросхемы типа AN6884, КА2284, ВА6124, и даже сделать пять реле по числу выходов.

Затем это надо? Причин может быть множество. Например, при превышении уровня громкости нужно отключить источник звука, либо включить сигнализацию.

Или нужно реагировать на превышение тока в нагрузке. Или можно сделать переключатель, состоящий из переменного резистора и этой схемы. При вращении ручки переменного резистора будет меняться напряжение на входе микросхемы, а на её выходах будут включаться реле.

Снятие сигнала с индикатора

Если нужно управлять не реле, а каким-то цифровым устройством, например, при превышении некоего уровня сигнала подавать логическую единицу на вход микроконтроллера или сигнализатора, можно собрать схему, показанную на рисунке 3. Здесь также для примера взят вариант со светодиодом HL5, хотя, конечно, можно и с любого другого выхода микросхемы.

Рис.3. Схема получения логического сигнала с сегмента индикатора.

При зажигании HL5 напряжение на базе VT1 относительного его же эмиттера увеличивается, транзистор открывается и на его коллекторе напряжение увеличивается до уровня логической единицы, соответственно напряжению питания микросхемы.

Рис. 4. Подключение с опто-развязкой.

Ну и последний вариант, - использовать оптопару. Можно любую оптопару, как с мощным симистором для управления каким-то нагревателем (так называемое, «твердотельное реле»), так и маломощную транзисторную, для передачи команды на другую схему.

В любом случае, два варианта, либо светодиод оптопары включить последовательно индикаторному светодиоду, как показано на рисунке 4, либо вместо него, как на рисунке не показано, но можно догадаться, но только если в индикации нет никакой необходимости.

Каравкин В. РК-2016-04.

Новые статьи

● Проект 12: Управляем реле через транзистор

В этом эксперименте мы познакомимся с реле, с помощью которого с Arduino можно управлять мощной нагрузкой не только постоянного, но и переменного тока.

Необходимые компоненты:

Реле - это электрически управляемый, механический переключатель, имеет две раздельные цепи: цепь управления, представленная контактами (А1, А2), и управляемая цепь, контакты 1, 2, 3 (см. рис. 12.1).

Цепи никак не связаны между собой. Между контактами А1 и А2 установлен металлический сердечник, при протекании тока по которому к нему притягивается подвижный якорь (2). Контакты же 1 и 3 неподвижны. Стоит отметить, что якорь подпружинен, и пока мы не пропустим ток через сердечник, якорь будет прижатым к контакту 3. При подаче тока, как уже говорилось, сердечник превращается в электромагнит и притягивается к контакту 1. При обесточивании пружина снова возвращает якорь к контакту 3.

При подключении реле к Arduino контакт микроконтроллера не может обеспечить мощность, необходимую для нормальной работы катушки. Поэтому следует усилить ток - поставить транзистор. Для усиления удобнее применять n-p-n-транзистор, включенный по схеме ОЭ (см. рис. 12.2). При таком способе можно подключать нагрузку с большим напряжением питания, чем питание микроконтроллера.
Резистор на базе - ограничительный. Может варьироваться в широких пределах (1-10 кОм), в любом случае, транзистор будет работать в режиме насыщения. В качестве транзистора может быть любой n-p-n-транзистор. Коэффициент усиления практически не имеет значения. Выбирается транзистор по току коллектора (нужный нам ток) и напряжению коллектор-эмиттер (напряжение, которым запитывается нагрузка).

Для включения реле, подключенного по схеме с ОЭ, на вывод Arduino необходимо подать 1, для выключения - 0. Подключим реле к плате Arduino по схеме на рис. 12.3 и напишем скетч управления реле. Каждые 5 секунд реле будет переключаться (включаться/выключаться). При переключении реле раздается характерный щелчок.
Содержимое скетча показано в листинге 12.1.

int relayPin = 10 ; // подключение к выводу D10 Arduino void setup () { pinMode(relayPin, OUTPUT); // настроить вывод как выход (OUTPUT) } // функция выполняется циклически бесконечное число раз void loop () { digitalWrite(relayPin, HIGH); // включить реле delay(5000 ); digitalWrite(relayPin, LOW); // выключить реле delay(5000 ); }

Порядок подключения:

1. Подключаем элементы к плате Arduino по схеме на рис. 12.3.
2. Загружаем в плату Arduino скетч из листинга 12.1.
3. Каждые 5 секунд происходит щелчок переключения реле если подключить контакты реле, например в разрыв подключенной к сети 220 В патрона с лампой накаливания, то увидим процесс включения/выключения лампы накаливания раз в 5 секунд (рис. 12.3).


Привет, Geektimes!

Управление мощными нагрузками - достаточно популярная тема среди людей, так или иначе касающихся автоматизации дома, причём в общем-то независимо от платформы: будь то Arduino, Rapsberry Pi, Unwired One или иная платформа, включать-выключать ей какой-нибудь обогреватель, котёл или канальный вентилятор рано или поздно приходится.

Традиционная дилемма здесь - чем, собственно, коммутировать. Как убедились многие на своём печальном опыте, китайские реле не обладают должной надёжностью - при коммутации мощной индуктивной нагрузки контакты сильно искрят, и в один прекрасный момент могут попросту залипнуть. Приходится ставить два реле - второе для подстраховки на размыкание.

Вместо реле можно поставить симистор или твердотельное реле (по сути, тот же тиристор или полевик со схемой управления логическим сигналом и опторазвязкой в одном корпусе), но у них другой минус - они греются. Соответственно, нужен радиатор, что увеличивает габариты конструкции.

Я же хочу рассказать про простую и довольно очевидную, но при этом редко встречающуюся схему, умеющую вот такое:

  • Гальваническая развязка входа и нагрузки
  • Коммутация индуктивных нагрузок без выбросов тока и напряжения
  • Отсутствие значимого тепловыделения даже на максимальной мощности

Но сначала - чуть-чуть иллюстраций. Во всех случаях использовались реле TTI серий TRJ и TRIL, а в качестве нагрузки - пылесос мощностью 650 Вт.

Классическая схема - подключаем пылесос через обычное реле. Потом подключаем к пылесосу осциллограф (Осторожно! Либо осциллограф, либо пылесос - а лучше оба - должны быть гальванически развязаны от земли! Пальцами и яйцами в солонку не лазить! С 220 В не шутят!) и смотрим.

Включаем:

Пришлось почти на максимум сетевого напряжения (пытаться привязать электромагнитное реле к переходу через ноль - задача гиблая: оно слишком медленное). В обе стороны бабахнуло коротким выбросом с почти вертикальными фронтами, во все стороны полетели помехи. Ожидаемо.

Выключаем:

Резкое пропадание напряжения на индуктивной нагрузке не сулит ничего хорошего - ввысь полетел выброс. Кроме того, видите вот эти помехи на синусоиде за миллисекунды до собственно отключения? Это искрение начавших размыкаться контактов реле, из-за которого они однажды и прикипят.

Итак, «голым» реле коммутировать индуктивную нагрузку плохо. Что сделаем? Попробуем добавить снаббер - RC-цепочку из резистора 120 Ом и конденсатора 0,15 мкФ.

Включаем:

Лучше, но не сильно. Выброс сбавил в высоте, но в целом сохранился.

Выключаем:

Та же картина. Мусор остался, более того, осталось искрение контактов реле, хоть и сильно уменьшившееся.

Вывод: со снаббером лучше, чем без снаббера, но глобально проблемы он не решает. Тем не менее, если вы желаете коммутировать индуктивные нагрузки обычным реле - ставьте снаббер. Номиналы надо подбирать по конкретной нагрузке, но 1-Вт резистор на 100-120 Ом и конденсатор на 0,1 мкФ выглядят разумным вариантом для данного случая.

Литература по теме: Agilent - Application Note 1399, «Maximizing the Life Span of Your Relays ». При работе реле на худший тип нагрузки - мотор, который, помимо индуктивности, при старте имеет ещё и очень низкое сопротивление - добрые авторы рекомендуют уменьшить паспортный ресурс реле в пять раз .

А теперь сделаем ход конём - объединим симистор, симисторный драйвер с детектированием нуля и реле в одну схему.

Что есть на этой схеме? Слева - вход. При подаче на него «1» конденсатор C2 практически мгновенно заряжается через R1 и нижнюю половину D1; оптореле VO1 включается, дожидается ближайшего перехода через ноль (MOC3063 - со встроенной схемой детектора нуля) и включает симистор D4. Нагрузка запускается.

Конденсатор C1 заряжается через цепочку из R1 и R2, на что уходит примерно t=RC ~ 100 мс. Это несколько периодов сетевого напряжения, то есть, за это время симистор успеет включиться гарантированно. Далее открывается Q1 - и включается реле K1 (а также светодиод D2, светящий приятным изумрудным светом). Контакты реле шунтируют симистор, поэтому далее - до самого выключения - он в работе участия не принимает. И не греется.

Выключение - в обратном порядке. Как только на входе появляется «0», C1 быстро разряжается через верхнее плечо D1 и R1, реле выключается. А вот симистор остаётся включённым примерно 100 мс, так как C2 разряжается через 100-килоомный R3. Более того, так как симистор удерживается в открытом состоянии током, то даже после отключения VO1 он останется открытым, пока ток нагрузки не упадёт в очередном полупериоде ниже тока удержания симистора.

Включение:

Выключение:

Красиво, не правда ли? Причём при использовании современных симисторов, устойчивых к быстрым изменениям тока и напряжения (такие модели есть у всех основных производителей - NXP, ST, Onsemi, etc., наименования начинаются с «BTA»), снаббер не нужен вообще, ни в каком виде.

Более того, если вспомнить умных людей из Agilent и посмотреть, как меняется потребляемый мотором ток, получится вот такая картинка:

Стартовый ток превышает рабочий более чем в четыре раза. За первые пять периодов - то время, на которое симистор опережает реле в нашей схеме - ток падает примерно вдвое, что также существенно смягчает требования к реле и продлевает его жизнь.

Да, схема сложнее и дороже, чем обычное реле или обычный симистор. Но часто она того стоит.







2024 © kubanteplo.ru.