Как умножать на логарифмической линейке. История логарифмической линейки. Мили в километры


Человеку, не знакомому с использованием логарифмической линейки, она покажется работой Пикассо. Она имеет как минимум три различных шкалы, почти на каждой из которых цифры расположены даже не на одинаковом расстоянии друг от друга. Но разобравшись, что к чему, вы поймете, почему логарифмическая линейка была такой удобной во времена до изобретения карманных калькуляторов. Правильно расположив нужные цифры на шкале, вы сможете выполнить умножение двух любых чисел гораздо быстрее, чем выполняя расчеты на бумаге.

Шаги

Часть 1

Общая информация

    Обратите внимание на промежутки между цифрами. В отличие от обычной линейки, расстояние между ними не одинаковое. Наоборот, оно определяется по особой «логарифмической» формуле, меньше с одной стороны и больше с другой. Благодаря этому вы можете совместить две шкалы нужным образом и получить ответ на задачу по умножению, как описано ниже.

    Метки на шкале. Каждая шкала логарифмической линейки имеет буквенное или символьное обозначение с левой или правой стороны. Ниже описаны общепринятые обозначения на логарифмических линейках:

    • Шкалы C и D похожи на одноразрядную вытянутую линейку, метки на которой расположены слева направо. Такая шкала называется «одноразрядной десятичной» шкалой.
    • Шкалы A и B - «двухразрядные десятичные» шкалы. Каждая состоит из двух небольших вытянутых линеек, расположенных впритык.
    • K - это трехразрядная десятичная шкала или три вытянутые линейки, расположенные впритык. Такая шкала имеется не на всех логарифмических линейках.
    • Шкалы C| и D| аналогичны C и D, но читаются справа налево. Часто они имеют красную окраску. Они присутствуют не на всех логарифмических линейках.
    • Логарифмические линейки бывают разные, поэтому и обозначение шкал может быть другим. На некоторых линейках шкалы для умножения могут быть помечены как A и B и находиться сверху. Независимо от буквенных обозначений, на многих линейках рядом со шкалами есть символ π, отмеченный в подходящем месте; в большинстве своем шкалы находятся напротив друг друга, либо в верхнем, либо в нижнем промежутке. Рекомендуем решить несколько простых задач на умножение, чтобы вы могли понять, правильно ли вы используете шкалы. Если произведение 2 и 4 не равняется 8, попробуйте использовать шкалы на другой стороне линейки.
  1. Научитесь понимать деления шкалы. Посмотрите на вертикальные линии на шкале C или D и ознакомьтесь с тем, как они читаются:

    • Основные цифры на шкале начинаются с 1 от левого края и продолжаются до 9, а затем завершаются еще одной 1 справа. Обычно все они нанесены на линейку.
    • Вторичные деления, обозначенные чуть меньшими вертикальными линиями, разделяют каждую основную цифру на 0,1. Вас не должно сбивать с толку, если они обозначены как «1, 2, 3»; все равно они соответствуют «1,1; 1,2; 1,3» и так далее.
    • Также могут присутствовать меньшие деления, которые обычно соответствуют шагу 0,02. Следите за ними внимательно, так как они могут исчезать в верхней части шкалы, где цифры находятся ближе друг к другу.
  2. Не ожидайте получить точные ответы. При чтении шкалы вам часто придется приходить к «наиболее вероятному предположению», когда ответ не будет попадать тютелька в тютельку. Логарифмическая линейка используется для быстрых подсчетов, а не для максимальной точности.

    • Например, если ответ находится между отметками 6,51 и 6,52, запишите то значение, которое вам кажется ближе. Если совсем непонятно, то запишите ответ как 6,515.

    Часть 2

    Умножение
    1. Запишите числа, которые вы будете умножать. Запишите числа, которые подлежат умножению.

      • В примере 1 этого раздела мы подсчитаем, сколько будет 260 x 0,3.
      • В примере 2 мы подсчитаем, сколько будет 410 x 9. Это немного сложнее, чем пример 1, поэтому сначала рассмотрим более простую задачу.
    2. Переместите десятичные точки для каждого числа. Логарифмическая линейка имеет цифры от 1 до 10. Переместите десятичную точку каждого умножаемого числа, чтобы они соответствовали своим значениям. После решения задачи мы переместим десятичную точку в ответе в нужное положение, что будет описано в конце раздела.

      • Пример 1: чтобы подсчитать 260 x 0.3, начинайте вместо этого с 2,6 x 3.
      • Пример 2: чтобы подсчитать 410 x 9, начинайте вместо этого с 4,1 x 9.
    3. Найдите меньшие цифры на шкале D, затем передвиньте к ней шкалу C. Найдите меньшую цифру на шкале D. Сдвиньте шкалу C таким образом, чтобы «1» слева (левый индекс) располагалась на одной линии с этой цифрой.

      • Пример 1: сдвиньте шкалу C таким образом, чтобы левый индекс совпал с 2,6 на шкале D.
      • Пример 2: сдвиньте шкалу C таким образом, чтобы левый индекс совпал с 4,1 на шкале D.
    4. Переместите металлический указатель ко второй цифре на шкале C. Указатель - это металлический предмет, который перемещается по всей линейке. Совместите указатель со второй цифрой вашей задачи на шкале C. Указатель будет указывать ответ к задаче на шкале D. Если он не перемещается так далеко, переходите к следующему шагу.

    5. Если указатель не перемещается к ответу, используйте правый индекс. Если указатель блокируется перегородкой в центре линейки или ответ расположен за пределами шкалы, то используйте немного иной подход. Сдвиньте шкалу C таким образом, чтобы правый индекс или 1 справа располагались над большим коэффициентом вашей задачи. Переместите указатель к другому коэффициенту по шкале C и прочтите ответ на шкале D.

      • Пример 2: переместите шкалу C таким образом, чтобы 1 справа совпала с 9 по шкале D. Переместите указатель к 4,1 по шкале C. Указатель показывает на шкалу D в точке между 3,68 и 3,7, поэтому наиболее вероятный ответ будет 3,69.
    6. Прикидывайте правильную десятичную точку. Независимо от производимого умножения, ваш ответ всегда будет считываться по шкале D, которая содержит лишь цифры от одного до десяти. Вам не обойтись без предположения и умственного подсчета, чтобы определить местонахождение десятичной точки в фактическом ответе.

      • Пример 1: нашей первоначальной задачей было 260 x 0,3, а линейка дала ответ 7,8. Округлите первоначальную задачу до удобных чисел и решите ее в голове: 250 x 0,5 = 125. Такой ответ гораздо ближе к 78, чем к 780 или 7,8, поэтому правильный ответ будет 78 .
      • Пример 2: нашей первоначальной задачей было 410 x 9, а линейка дала ответ 3,69. Прикиньте первоначальную задачу как 400 x 10 = 4000. Ближайшим числом будет 3690 , которое и станет фактическим ответом.

    Часть 3

    Возведение в квадрат и куб

    Часть 4

    Извлечение квадратного и кубического корня
    1. Запишите число в экспоненциальном представлении для извлечения квадратного корня. Как и всегда, на линейке есть только значения от 1 до 10, поэтому для извлечения квадратного корня вам потребуется записать число в экспоненциальном представлении .

      • Пример 3: для решения √(390) запишите задачу как √(3,9 x 10 2).
      • Пример 4: для решения √(7100) запишите задачу как √(7,1 x 10 3).
    2. Определите, какую сторону шкалы A необходимо использовать. Чтобы извлечь квадратный корень числа, для начала переместите указатель к этому числу по шкале A. Но так как шкала A нанесена дважды, необходимо решить, какую использовать.

      Находим ответ по шкале D. Прочитайте значение по шкале D, на которое наведен указатель. Прибавьте к нему "x10 n ". Для подсчета n возьмите исходную степень 10, округлите в меньшую сторону до ближайшего четного числа и разделите на 2.

      • Пример 3: соответствующее значение шкалы D при A=3,9 будет 1,975. Изначальная цифра в экспоненциальном представлении имела 10 2 . 2 уже четная, поэтому просто разделите на 2, чтобы получить 1. Окончательный ответ будет 1,975 x 10 1 = 19,75 .
      • Пример 4: соответствующее значение шкалы D при A=7,1 будет 8,45. Изначальная цифра в экспоненциальном представлении имела 10 3 , поэтому округлите 3 до ближайшего четного числа, 2, а затем разделите на 2, чтобы получить 1. Окончательный ответ будет 8,45 x 10 1 = 84,5 .
    3. Аналогичным способом извлекайте кубические корни по шкале K. Процесс извлечения кубического корня очень схож. Самое главное - определить, какую из трех шкал K следует использовать. Для этого разделите количество цифр вашего числа на три и узнайте остаток. Если остаток 1, используйте первую шкалу. Если 2, используйте вторую шкалу. Если 3, используйте третью шкалу (еще один способ - многократно считать от первой шкалы до третьей, пока не достигнете количества цифр в вашем ответе).

      • Пример 5: для извлечения кубического корня из 74 000 необходимо подсчитать количество цифр (5), разделить его на 3 и узнать остаток (1, остаток 2). Так как остаток 2, используем вторую шкалу (также можно выполнить счет по шкалам пять раз: 1–2–3–1–2 ).
      • Переместите курсор к 7,4 по второй шкале K. Соответствующее значение по шкале D будет примерно 4,2.
      • Так как 10 3 меньше 74 000, но 100 3 больше 74 000, ответ должен быть в рамках от 10 до 100. Переместите десятичную точку, чтобы получить 42 .
    • Логарифмическая линейка позволяет также выполнять расчет других функций, особенно если на ней имеется шкала логарифмов, шкала тригонометрических расчетов или другие специализированные шкалы. Попробуйте разобраться в них самостоятельно или почитайте информацию в интернете.
    • Можно использовать метод умножения для преобразования между двумя единицами измерения. Например, поскольку 1 дюйм = 2,54 сантиметра, задачу «преобразовать 5 дюймов в сантиметры» можно трактовать как пример умножения 5 x 2,54.
    • Точность логарифмической линейки зависит от количества различимых масштабных отметок. Чем больше длина линейки, тем выше ее точность.

Изобретатель : Уильям Отред и Ричард Деламейн
Страна : Англия
Время изобретения : 1630 г.

Изобретателями первых логарифмических являются англичане - математик и педагог Уильям Отред (William Oughtred)и учитель математики Ричард Деламейн (Richard Delamaine).

Сын священника, Уильям Отред учился сначала в Итоне, а затем в Кембриджском королевском колледже, специализировался в области математики. В 1595 году Отред получил первую ученую степень и вошел в совет колледжа. Ему было тогда чуть больше 20 лет. Позже Отред стал совмещать занятия математикой с изучением богословия и в 1603 году стал священником. Вскоре он получил приход в Олбьюри, близ Лондона, где и прожил большую часть жизни. Однако настоящим призванием этого человека являлось преподавание математики.

Летом 1630 года у Отреда гостил его ученик и друг, лондонский учитель математики Уильям Форстер. Коллеги разговаривали о математике и, как бы сказали сегодня, о методике ее преподавания. В одной из бесед Отред критически отозвался о шкале Гюнтера, отметив, что манипулирование двумя отнимает много времени и дает низкую точность.

Валлиец Эдмунд Гюнтер построил логарифмическую шкалу, которая использовалась вместе с двумя циркулями-измерителями. Шкала Гюнтера представляла собой отрезок с делениями, соответствующими логарифмам чисел или тригонометрических величин. С помощью циркулей-измерителей определяли сумму или разность длин отрезков шкалы, что в соответствии со свойствами логарифмов позволяло находить произведение или частное.

Гюнтер ввел также общепринятое теперь обозначение log и термины косинус и котангенс.

Первая линейка Отреда имела две логарифмические шкалы, одна из которых могла смещаться относительно другой, неподвижной. Второй инструмент представлял собой кольцо, внутри которого вращался на оси круг. На круге (снаружи) и внутри кольца были изображены “свернутые в окружность” логарифмические шкалы. Обе линейки позволяли обходиться без циркулей.

В 1632 году в Лондоне вышла книга Отреда и Форстера “Круги пропорций” с описанием круговой логарифмической (уже иной конструкции), а описание прямоугольной логарифмической линейки Отреда дано в книге Форстера “Дополнение к использованию инструмента, называемого “Кругами пропорций”, вышедшей в следующем году. Права на изготовление своих линеек Отред передал известному лондонскому механику Элиасу Аллену.

Линейка Ричарда Деламейна (который был в свое время ассистентом Отреда), описанная им в брошюре “Граммелогия, или Математическое кольцо”, появившейся в 1630 году, тоже представляла собой кольцо, внутри которого вращался круг. Потом эта брошюра с изменениями и дополнениями издавалась еще несколько раз. Деламейн описал несколько вариантов таких линеек (содержащих до 13 шкал). В специальном углублении Деламейн поместил плоский указатель, способный двигаться вдоль радиуса, что облегчало использование линейки. Предлагались и другие конструкции. Деламейн не только представил описания линеек, но и дал методику градуировки, предложил способы проверки точности и привел примеры использования своих устройств.

Не стоит забывать, что именно с помощью логарифмической линейки человек впервые ступил на Луну.

Уильям Отред, выпускник Итонской школы и Кембриджского королевского колледжа, пастор церкви в Олсбери в графстве Суррей, был страстным математиком и с удовольствием преподавал любимый предмет многочисленным ученикам, с которых не брал никакой платы. «Маленького роста, черноволосый и черноглазый, с проницательным взглядом, он постоянно что-то обдумывал, чертил какие-то линии и диаграммы в пыли, - так описывал Отреда один из биографов. - Когда ему попадалась особенно интересная математическая задача, бывало, что он не спал и не ел, пока не находил ее решения». В 1631 году Отред опубликовал главный труд своей жизни - учебник Clavis Mathematicae («Ключ математики»), выдержавший несколько переизданий на протяжении почти двух веков. Однажды, обсуждая «механические вычисления» с помощью линейки Гюнтера со своим учеником Уильямом Форстером, Отред отметил несовершенство этого метода. Между делом учитель продемонстрировал свое изобретение - несколько концентрических колец с нанесенными на них логарифмическими шкалами и двумя стрелками. Форстер был восхищен и позднее писал: «Это превосходило любой из инструментов, которые были мне известны. Я удивлялся, почему он скрывал это полезнейшее изобретение многие годы…» Сам Отред говорил, что он «просто изогнул и свернул шкалу Гюнтера в кольцо», и к тому же был уверен, что «настоящее искусство [математики] не нуждается в инструментах…», их использование он считал допустимым только после овладения этим искусством. Однако ученик настоял на публикации, и в 1632 году Отред написал (на латыни), а Форстер перевел на английский брошюру «Круги пропорций и горизонтальный инструмент», где была описана логарифмическая линейка.

Авторство этого изобретения оспаривал другой его ученик - Ричард Деламэйн, опубликовавший в 1630 году книгу «Граммелогия, или Математическое кольцо». Некоторые утверждают, что он просто украл изобретение у учителя, но возможно, он пришел к похожему решению независимо. Еще один претендент на авторство - лондонский математик Эдмунд Уингейт, предложивший в 1626 году использовать две линейки Гюнтера, скользящие друг относительно друга. До современного состояния инструмент довели Роберт Биссакер, сделавший линейку прямой (1654), Джон Робертсон, снабдивший ее бегунком (1775), и Амеде Маннгейм, оптимизировавший расположение шкал и бегунка.

Логарифмическая линейка значительно облегчила сложные вычисления для инженеров и ученых. В XX веке до появления калькуляторов и компьютеров логарифмическая линейка была таким же символом инженерных специальностей, каким для врачей является фонендоскоп.

Хорошо приспособленный к выполнению операций сложения и вычитания, абак оказался недостаточно эффективным прибором для выполнения операций умножения и деления. Поэтому открытие логарифмов и логарифмических таблиц Дж. Непером вначале XVII в., позволивших заменять умножение и деление соответственно сложением и вычитанием, явилось следующим крупным шагом в развитии вычислительных систем ручного этапа. Его «Канон о логарифмах» начинался так: «Осознав, что в математике нет ничего более скучного и утомительного, чем умножение, деление, извлечение квадратных и кубических корней, и что названные операции являются бесполезной тратой времени и неиссякаемым источником неуловимых ошибок, я решил найти простое и надежное средство, чтобы избавиться от них». В работе «Описание удивительной таблицы логарифмов» (1614) изложил свойства логарифмов, дал описание таблиц, правила пользования ими и примеры применений. Основанием таблицы логарифмов Непера является иррациональное число, к которому неограниченно приближаются числа вида (1 + 1/n) n при безграничном возрастании n. Это число называют неперовым числом и обозначают буквой е:

e=lim (1+1/n) n=2,71828…

Впоследствии появляется целый ряд модификаций логарифмических таблиц. Однако в практической работе их использование имеет ряд неудобств, поэтому Дж. Непер в качестве альтернативного метода предложил специальные счетные палочки (названные впоследствии палочками Непера), позволявшие производить операции умножения и деления непосредственно над исходными числами. В основу данного метода Непер положил способ умножения решеткой.

Наряду с палочками Непер предложил счетную доску для выполнения операций умножения, деления, возведения в квадрат и извлечения квадратного корня в двоичной системе счисления, предвосхитив тем самым преимущества такой системы счисления для автоматизации вычислений.

Так как же работают логарифмы Непера? Слово изобретателю: «Отбросьте числа, произведение, частное или корень которых необходимо найти, и возьмите вместо них такие, которые дадут тот же результат после сложения, вычитания и деления на два и на три». Иными словами, используя логарифмы, умножение можно упростить до сложения, деление превратить в вычитание, а извлечение квадратного и кубического корней - в деление на два и на три соответственно. Например, чтобы перемножить числа 3,8 и 6,61, определим с помощью таблицы и сложим их логарифмы: 0,58+0,82=1,4. Теперь найдем в таблице число, логарифм которого равен полученной сумме, и получим почти точное значение искомого произведения: 25,12. И никаких ошибок!

Логарифмы послужили основой создания замечательного вычислительного инструмента - логарифмической линейки, более 360 лет служащего инженерно-техническим работникам всего мира. Прообразом современной логарифмической линейки считается логарифмическая шкала Э. Гюнтера, использованная У. Отредом и Р. Деламейном при создании первых логарифмических линеек. Усилиями целого ряда исследователей логарифмическая линейка постоянно совершенствовалась и видом, наиболее близким к современному, она обязана 19-летнему французскому офицеру А. Манхейму.

Логарифмическая линейка - аналоговое вычислительное устройство, позволяющее выполнять несколько математических операций, в том числе, умножение и деление чисел, возведение в степень (чаще всего в квадрат и куб), вычисление логарифмов, тригонометрических функций и другие операции

Для того чтобы вычислить произведение двух чисел, начало подвижной шкалы совмещают с первым множителем на неподвижной шкале, а на подвижной шкале находят второй множитель. Напротив него на неподвижной шкале находится результат умножения этих чисел:

lg(x) + lg(y) = lg(xy)

Чтобы разделить числа, на подвижной шкале находят делитель и совмещают его с делимым на неподвижной шкале. Начало подвижной шкалы указывает на результат:

lg(x) - lg(y) = lg (x/y)

С помощью логарифмической линейки находят лишь мантиссу числа, его порядок вычисляют в уме. Точность вычисления обычных линеек - два-три десятичных знака. Для выполнения других операций используют бегунок и дополнительные шкалы.

Следует отметить, что, несмотря на простоту, на логарифмической линейке можно выполнять достаточно сложные расчёты. Раньше выпускались довольно объёмные пособия по их использованию.

Принцип действия логарифмической линейки основан на том, что умножение и деление чисел заменяется, соответственно, сложением и вычитанием их логарифмов.

Вплоть до 1970-х гг. логарифмические линейки были так же распространены, как пишущие машинки и мимеографы. Ловким движением рук инженер без труда перемножал и делил любые числа и извлекал квадратные и кубические корни. Чуть больше усилий требовалось для вычисления пропорций, синусов и тангенсов.

Украшенная дюжиной функциональных шкал, логарифмическая линейка символизировала сокровенные тайны науки. На самом деле, основную работу выполняли всего две шкалы, поскольку практически все технические расчеты сводились к умножению и делению.

Логарифмическая линейка (фото см. ниже) была придумана как прибор для экономии умственных затрат и времени, связанных с математическими расчетами. Особое распространение она получила в практике инженеров в институтах, ориентированных на научно-исследовательскую деятельность, и в статистических бюро до момента внедрения электронной вычислительной техники.

Линейка логарифмическая: история

Прообразом счетного устройства была шкала для вычислений английского математика Э. Гантера. Он придумал ее в 1623 г., вскоре после открытия логарифмов, для упрощения работы с ними. Шкала использовалась в сочетании с циркулем. Им отмеривались необходимые градуированные отрезки, которые потом складывались или вычитались. Операции с числами заменялись действиями с логарифмами. Используя их основные свойства, умножить, делить, возводить в степень или вычислять корень числа оказалось намного проще.

В 1623 году линейка логарифмическая была усовершенствована У. Отредом. Он добавил вторую подвижную шкалу. Она перемещалась вдоль основной линейки. Отмерять отрезки и считывать результаты исчислений стало легче. Для повышения точности устройства в 1650 году была реализована попытка увеличения длины шкалы за счет ее расположения по спирали на вращающемся цилиндре.

Добавление в конструкцию бегунка (1850 г.) сделало процесс исчисления еще более удобными. Дальнейшее усовершенствование механизма и способа нанесения логарифмических шкал на стандартную линейку не добавили точности прибору.

Устройство

Линейка логарифмическая (стандартная) изготавливалась из плотной древесины, стойкой к истиранию. Для этого в промышленных масштабах использовалось грушевое дерево. Из него изготавливался корпус и движок - планка меньшего размера, монтируемая во внутреннем пазе. Ее можно перемещать параллельно основанию. Бегунок изготавливался из алюминия или стали со смотровым окошком из стекла или пластика. На него нанесена тонкая вертикальная линия (визир). Бегунок двигается по боковым направляющим и подпружинивается стальной пластинкой. Корпус и движок облицованы светлым целлулоидом, на котором тиснением нанесены шкалы. Их деления заполнены типографской краской.

На лицевой стороне линейки располагаются семь шкал: четыре- на корпусе и три - на движке. На боковых гранях нанесена простая измерительная разметка (25 см) с делениями 1 мм. Шкалы (C) на движке внизу и (D) на корпусе сразу под ней считаются главными. На основании сверху располагается кубическая разметка (K), под ней - квадратичная (A). Ниже (сверху на движке) есть точно такая же симметричная вспомогательная шкала (B). Внизу на корпусе еще есть разметка для значений логарифмов (L). В самом центре лицевой части линейки между разметками (B) и (C) нанесена обратная шкала чисел (R). С другой стороны движка (планку можно вынуть из пазов и перевернуть) присутствуют еще три шкалы для расчета тригонометрических функций. Верхняя (Sin) - предназначена для синусов, нижняя (Tg) - тангенсов, средняя (Sin и Tg) - общая.

Разновидности

Стандартная линейка логарифмическая имеет длину измерительной шкалы 25 см. Выпускался еще карманный вариант длиной 12,5 см и устройство повышенной точности 50 см. Существовало деление линеек на первый и второй сорта в зависимости от качества исполнения. Внимание уделялось четкости наносимых штрихов, обозначений и вспомогательных линий. Движок и корпус должны были быть ровными и идеально подогнаны друг к другу. Изделия второго сорта могли иметь незначительные царапины и точки на целлулоиде, но они не искажали обозначений. Также мог присутствовать незначительный люфт в пазах и прогиб.

Существовали и другие карманные (похожие на часы диаметром 5 см) варианты устройства - логарифмическая дисковая (типа «Спутник») и круговая (КЛ-1) линейки. Они отличались и конструкцией, и меньшей точностью измерений. В первом случае для установки чисел на замкнутых круговых логарифмических шкалах использовалась прозрачная крышка с линией-визиром. Во втором - механизм управления (две вращающиеся ручки) был смонтирован на корпусе: одной управлялся дисковый движок, другая управляла стрелкой-визиром.

Возможности

Логарифмической линейкой общего назначения можно было осуществлять деление и умножение чисел, возведить их в квадрат и куб, извлекать корень, решать уравнения. Кроме этого, по шкалам производились тригонометрические вычисления (синус и тангенс) по заданным углам, определялись мантиссы логарифмов и обратные действия - находились числа по их значениям.

Правильность вычислений во многом зависела от качества линейки (длинны ее шкал). В идеале можно было надеяться на точность до третьего знака после запятой. Такие показатели были вполне достаточными для технических расчетов в XIX веке.

Возникает вопрос: как пользоваться логарифмической линейкой? Одного знания назначения шкал и способов нахождения на них чисел еще не достаточно для произведения расчетов. Чтобы использовать все возможности линейки, нужно понимать, что такое логарифм, знать его характеристики и свойства, а также принципы построения и зависимости шкал.

Для уверенной работы с устройством требовались определенные навыки. Сравнительно простые вычисления с одним бегунком. Для удобства движок (чтобы не отвлекал) можно удалять. Установив черту на значения любого числа на основной (D) шкале можно сразу же по визиру получить результат возведения его в квадрат на шкале выше (A) и в куб - на самой верхней (K). Внизу (L) будет значение его логарифма.

Деление и умножение чисел производится с помощью движка. Применяются свойства логарифмов. Согласно им, итог умножения двух чисел равен результату сложения их логарифмов (аналогично: деление и разница). Зная это, можно достаточно быстро производить расчеты, используя графические шкалы.

Чем сложна логарифмическая линейка? Инструкция по ее правильному использованию шла в комплекте с каждым экземпляром. Кроме знания свойств и характеристик логарифмов, нужно было уметь правильно находить исходные числа на шкалах и уметь в нужном месте считывать результаты, в том числе самостоятельно определять точное место расположения запятой.

Актуальность

Как пользоваться логарифмической линейкой, в наше время знают и помнят немногие, и с уверенностью можно утверждать, что число таких людей будет снижаться.

Логарифмическая линейка из разряда карманных счетных приспособлений давно стала раритетом. Для уверенной работы с ней нужна постоянная практика. Методика расчетов с примерами и разъяснениями тянет на брошюру в 50 листов.

Для среднестатистического человека, далекого от высшей математики, логарифмическая линейка может представлять какую-то ценность разве что справочными материалами, размещенными на обратной стороне корпуса (плотность некоторых веществ, температура плавления и пр.). Преподаватели даже не утруждаются вводить запрет на ее наличие при сдаче экзаменов и зачетов, понимая, что разобраться с тонкостями ее использования современному студенту очень сложно.







2024 © kubanteplo.ru.