Приемник прямого преобразования головки от магнитофона. Громкоговорящий ппп на германиевых транзисторах. Для схемы "улучшение избирательности приемников"


Принципиальная схема самодельного коротковолнового приемника для работы на частотах всех радиолюбительских диапазонов от 160 метров до 10 метров. Названлабораторным (экспериментальным), потому что работает совместно с двумя лабораторными приборами, - генератором ВЧ и подключенным к нему частотомером. Генератор ВЧ используется как гетеродин приемника, а частотомер как шкала настройки.

Особенности приемника

Приемник собран по схеме прямого преобразования, имеет чувствительность не хуже 1 мкВ. Может принимать сигналы радиостанций, работающих телефоном (SSB) и телеграфом (CW).

Органов управления приемником получается довольно много, - перестраиваемый входной контур, регулятор чувствительности, а так же, органы настройки частоты и регулировки выходного напряжения работающего с приемником ГВЧ, и регулятор громкости имеющийся в наушниках (используются «связные» наушники ТОН-2, электромагнитные высокоомные с регулятором в тройнике).

Принципиальная схема

Сигнал от антенны поступает на входной контур, состоящий из набора последовательно включенных катушек L1-L6 и переменного конденсатора С1. Все катушки готовые высокочастотные дросселя промышленного производства. Их подстраивать не нужно. Контур перестраивается на диапазоны скачками с помощью переключателя S1 (галет-ный переключатель с керамическими платами).

Плавная настройка - переменным конденсатором С1 7-180 пФ, односекционным (конденсатор настройки от старого карманного приемника «Юность»). Емкость конденсатора не подобрана по перекрытию диапазонов, поэтому, пределы перестройки захватывают существенно и соседние диапазоны.

Если необходимо, можно ограничить диапазон перекрытия С1 подключением последовательно ему конденсатора, снижающего его максимальную емкость, и параллельно, повышающего его минимальную емкость.

Но это усложнит коммутацию, так как добавочные емкости будут разными для различных диапазонов. Впрочем, можно выбрать и оптимальный вариант, приемлемый для всех диапазонов, если есть необходимость в такой настройке.

Рис. 1. Принципиальная схема всеволнового (160м-10м) лабораторного КВ применика на четырех транзисторах.

С входного контура сигнал поступает на УРЧ на двухзатворном полевом транзисторе VT1 типа BF966. Здесь можно использовать и отечественные двухзатворные полевые транзисторы, например, КП350. С помощью резистора R3 можно регулировать постоянное напряжение на втором затворе VT1, что изменяет коэффициент передачи каскада, и таким образом влияет на чувствительность.

Нагружен УРЧ дросселем L7, индуктивностью 100 мкГн. С него сигнал поступает на смеситель, выполненный на полевом транзисторе VТ2. Это ключевая схема преобразователя частоты.

На затвор поступает напряжение гетеродина, в данном случае, напряжение с выхода лабораторного генератора ВЧ, и с каждым периодом транзистор открывается. На выходном фильтре C7-R8-C8 результат интегрируется в результат преобразования.

Для ВЧ полевой транзистор физически работает как активное сопротивление. И шума не больше чем от обычного резистора. Поэтому можно добиться значительной чувствительности весьма простым способом.

Вывести преобразователь частоты на оптимальный режим работы можно либо задавая на затворе VТ2 постоянное напряжение смещения (отрицательное), либо выбрав достаточно большую амплитуду напряжения гетеродина (несколько вольт).

Здесь оптимального результата достигают регулируя уровень напряжения ВЧ на выходе ГВЧ, так чтобы получить наилучшее качество приема. Но ГВЧ должен быть таким, чтобы максимальное напряжение на его выходе было достаточным с запасом (не ниже ЗV).

С выхода фильтра НЧ C7-R8-C8 низкочастотный сигнал поступает на усилитель НЧ на двух транзисторах VТЗ и VТ4. Усилитель выполнен по схеме с гальванической связью между каскадами.

Режим работы по постоянному току устанавливается автоматически. Нагружен УНЧ на высокоомные головные телефоны «ТОН-2» сопротивлением 1600 Ом с встроенным в тройник резистором - регулятором громкости. Поэтому собственного регулятора громкости в схеме нет.

Детали

В приемнике нет ни одной самодельной намоточной детали. Все катушки, - это дросселя высокочастотные промышленного производства. Номинальные индуктивности дросселей входного контура должны соответствовать указанным на схеме.

Индуктивность дросселя L7 может быть от 80 до 200 мкГн. Можно использовать и самодельные катушки соответствующей индуктивности.

Горчук Н. В. РК-2010-04.

Уважаемые читатели, Вы знаете что такое: детектор, «деревянная антенна», металлический изолятор? А почему это зеркало зеркальное? Что такое радио FM? Вы слышали про такое как: гармоники, обратная связь, супергетеродин? Из какой «оперы» такие названия как: максимум максиморум, DSB, SSB, ПАЛСЕКАМ? Что чернее чёрного? И почему это кино, которое Вы смотрите по телевидению, короче на 4%? А Вы знаете как подключить два-три телевизора к одной антенне? А почему одни спутники «висят» над землёй, а другие движутся? Если Вы затрудняетесь с ответом или впервые слышите обо всём этом, или Вам просто интересно, то все мои мини-лекции для Вас!

Все мини-лекции в большей или меньшей степени связаны между собой. И содержание предыдущей лекции так или иначе раскрывает содержание последующей! Насколько возможно, постараюсь Вас не нагружать подробностями. Думаю, что Вы узнаете что-то новое для себя, полезное и посмотрите на всё другими глазами!?

Что же это за приёмник такой, прямого преобразования?! Это, что-то новенькое? Но как оказалось, новое - хорошо, очень хорошо забытое старое! Про прямое преобразование впервые я узнал где-то в семидесятые и то случайно. Собрал небольшой приёмник схема на рис3., - да, работает и даже неплохо! Но каково же было моё удивление когда я узнал, что этот принцип случайно был применён ещё в 1901-м году. И была обнаружена некая закономерность, что случайно включенный генератор позволил резко повысить качество приёма. Такой генератор был назван гетеродином. Умный словарь нам опять же поясняет, что гетеродин с греческого heteros «другой» + dynamis «сила». То есть вспомогательный генератор, придающий нам силу, большие возможности. С появлением амплитудной модуляции и новых методов приёма все «гетеро» стали как-то уходить на второй план. А с изобретением супергетеродина в 30-х годах про эти «гетеро» и вообще забыли напрочь!

О том, что такое супергетеродин я уже рассказывал Вам в предыдущей лекции. А почему же именно супер? И что такое супер, - слово которое нередко звучит сейчас со всех сторон? А тот же умный словарь поясняет, что супер от латинского super «сверху, над». А сверху, над, это над чем? А над тем, что в начале радиоэры в приёмниках использовалось для приёма телеграфных сигналов, то есть над гетеродином. С помощью этого самого гетеродина можно было принимать сигналы не только на телеграфный аппарат, но и на слух! Что сейчас, до сих пор и практикуется. И при помощи того же самого гетеродина, чтоб он был здоров! А супер это как бы над тем вот телеграфным гетеродином. Так, что получается если в бытовых приёмниках (как пример в предыдущей лекции) нет гетеродина для приёма телеграфа, то стало быть он и не супергетеродин, а так себе, - чёрти, что и сбоку дверца?! Ну дык, раз уж так назвали?.. Ну и чёрт с ним, с бытовым приёмником, пусть будет супергетеродином!

Итак, мы с Вами познакомились на предыдущих лекциях с видами приёма и самими приёмниками. Это: детекторные, прямого усиления и супергетеродин. Детекторные и прямого усиления приёмники одного и того же принципа. Настройка на нужную частоту, детектирование и усиление. И более ничего! В супергетеродине (блок-схема рис1.) путь от антенны и до детектора несколько иной. Сигнал после фильтрации входным контуром зеркальных и прочих каналов попадает в смеситель. Туда же попадает частота вспомогательного генератора, - гетеродина. На выходе смесителя от такого воздействия получается частота биения, названная промежуточной. После дополнительного усиления она попадает наконец-то в детектор. Ну, далее всё также как и в приёмнике прямого усиления.

А так как человек существо мыслящее, то ему вдруг стукнуло, а почему бы не обойтись без всяких промежуточностей?.. А взять, да получить сразу же результат, - звуковую частоту? Сказано-сделано! Так родился новый принцип, - принцип прямого преобразования. Стало быть и приёмники стали называться приёмниками прямого преобразования. Хорошо? Хорошо-то хорошо, да ничего хорошего?! Как оказалось, что для приёма популярной амплитудной модуляции такой принцип мягко говоря не пригоден! А уж про частотную даже и говорить не стоит. А для чего же он тогда пригоден?

На рис2. показана блок-схема такого приёмника прямого преобразования. Если приглядеться, то многое напоминает супергетеродин... На схеме ПФ - полосовой фильтр, тот же контур, что и в супергетеродине. После смесителя тоже стоит фильтр, только не какой-то там промежуточной, а сразу же низкой частоты, звуковой. А далее аналогично рис1. УНЧ, - усилитель низкой частоты и громкоговоритель (головные телефоны). Усиление как видите в основном происходит в УНЧ и никаких-то там сложнейших фильтров! А выжимать из УНЧ все соки мы уже давно научились!

На рис3. Вы видите уже принципиальную схему простого приёмника испробованного мною ещё в восьмидесятые годы. Если кто-то, когда-то, что-то собирал (приёмники, усилители и пр.) могли заметить, что нет в схеме ничего сверх-сверх, обычные и вполне доступные комплектующие! И схема уж всяко проще любого супергетеродина. Хотя чувствительность в пять раз выше обычного бытового приёмника. И по показателям даже приближается к промышленным, связным!

Чтобы не загромождать картинку я убрал данные составляющих. Если у кого-то появится интерес, - без проблем, через E-mail стало быть! Плюс ко всему, есть ещё и электронные книги в тему. На схеме: жёлтыми метками обозначен входной контур. Зелёным цветом два диода, - смеситель. Пурпурные метки, фильтр НЧ. Синий цвет, всё, что касается УНЧ. И наконец, красным цветом все составляющие гетеродина.

Теперь, когда Вы немного в теме, поговорим о том что же это за прямое преобразование?! И хотя всё это на стадии бесконечных экспериментов, но?.. Но всё это в основном делается радиолюбителями, даже довольно грамотными! И один из них пишущий! Это Поляков Владимир Тимофеевич. По крайней мере несколько его книг можно найти в сети или в магазинах в бумажном варианте.

Это книги: «Радиолюбителям о технике прямого преобразования»; «Приёмники прямого преобразования для любительской связи»; «Трансиверы прямого преобразования» и ряд других.

Так кто же применяет этот принцип прямого преобразования? И вообще в чём кайф от этого всего? Ну!.. Пока это всё применяют радиолюбители-коротковолновики. Или просто интересующиеся радиолюбительством. Какой же вид модуляции в настоящее время применяют коротковолновики для проведения связей? Ушли в прошлое такие виды как АМ (Амплитудная модуляция) и ЧМ (Частотная модуляция). И, что? Для телеграфной связи (CW) собственно ничего не изменилось: всё те же посылки точек и тире, в виде высокочастотных импульсов, а в телефонии - SSB, так называемая связь на одной боковой полосе. Как получается SSB-сигнал я рассказывал в Мини-лекции «Модуляция». В общем виде (так уж всё получается!) мы принимаем набор радиочастот с изменяющейся амплитудой и каждая такая радиочастота первоначально соответствовала определённой звуковой!

А как определить что, есть что? Правильно! Точкой опоры является несущая частота. Но это в АМ-сигнале. Там расстояние на частотной шкале от несущей до какой либо радиочастоты соответствовал определённой, звуковой! Железная привязка! Но несущую отрезали и?.. И теперь её нужно восстановить, но уже на месте приёма. Но как попасть куда надо? А надо ли? И, что произойдёт если не туда, куда надо? Конца света конечно не будет, а всего лишь сдвиг звукового спектра! Голос оператора с той стороны (в большинстве случаев Вы его просто можете не знать?) может изменяться в больших пределах и Вы лично решаете какой Вам приятнее?! А меняя расстояние (на шкале частот) между восстановленной несущей и спектром радиочастот боковой полосы путём настройки, Вы заставляете своего корреспондента говорить то басом, то тенором... Естественно, это Ваш выбор!

А, что телеграф? Как SSB-сигнал, так и CW, телеграфный на обычный бытовой приёмник Вы не примете. Точнее примете, но толку никакого! Телеграф будет хлопать Вам по ушам и не более, а SSB какое-то кваканье-хрюканье неразборчивое и всё! И только при включение искусственной несущей (гетеродина) всё меняется до неузнаваемости! Телеграф начинает мелодично пиликать. SSB превращается в чистую человеческую речь!

Но проблема зеркальных каналов только в простых приёмниках неразрешима. В более сложных, ненужную полосу пропускания (зеркальный канал) убирают так называемым фазовым методом! На рис5. (a) осцилограмма фазового метода подавления зеркального канала. В данном случае нижней боковой полосы пропускания (НБП). Зелёным цветом помечена оставшаяся верхняя боковая полоса пропускания (ВБП). В реальности полоса пропускания будет выглядеть как на рис2. (a), но без нижней боковой, та, что обозначена синим цветом. Так, что не всё так плохо?! В случае приёма прямого преобразования (с подавленной одной боковой полосой) субъективно эфир кажется более чистым и прозрачным! И даже при очень слабом сигнале есть 100% уверенность, что Вы принимаете истинную частоту, а не зеркально-комбинационную грязь?!

Как же всё это выглядит в реальности при приёме на наш простой приёмник рис3.? Но с телеграфом там можно не беспокоиться, иногда такая ситуация (с двумя полосами пропускания) бывает даже полезна! Посмотрите на рис4.(b). Скажем у нас основной канал слева от fг частоты гетеродина, зеркальный справа. Мы можем перестроить частоту гетеродина правее зеркального. После чего он превратится в основной, но уже отодвинутый от какой-нибудь помехи! Так часто делается. А что с SSB? Здесь гораздо хуже! Мешающий сигнал рис4.(a)(SSB и имеющий такую же боковую полосу {красного цвета}, что и основной {зелёного цвета}) в силу своего положения относительно несущей, оказывается вывернутым наизнанку! Самые низкие частоты речевого спектра становятся верхними, а верхние нижними! Речь становится отвратительной и непонятной... На рис4.(с) видны пересекающиеся спектры основного и зеркального каналов, хотя они и не находятся на одной частоте! И если радиолюбителей это ещё как-то устраивает (они выкручиваются как могут?!), то профессионалов, - нет! По крайней мере пока я не слышал о применение прямого преобразования в профессиональной технике?! Но это пока...

То о чём я хочу Вам рассказать далее не очень относится к теме, а скорее к её практической стороне. На рис5. показана передняя часть приёмника прямого преобразования. Очень похожего на промышленный образец? Ну, в общем, это где-то, так! Маленькая ручка управления слева (RF) это аттенюатор, по-русски регулятор уровня сигнала, поступающего из антенны. Вторая маленькая ручка, она справа внизу, регулятор громкости (AF). Тумблер переключения фильтров НЧ (CW/SSB) в правом верхнем углу лицевой части приёмника. И наконец-то (посередине) ручка настройки на частоту станции. Так-как аппарат однодиапазонный (80 метровый), то и шкала одна. В принципе перестроить на другой диапазон не составит большого труда.

А откуда я всё это взял, этот приёмник очень похожий на промышленный? История такова. Некто польский радиолюбитель (SP5DDJ) разработал и материализовал данный приёмник. Он изначально предназначался для начинающих радиолюбителей. Как уж там всё дальше было, только вот я обнаружил некий сайт http://radio-kits.ucoz.ru/index/prostoj_ppp_na_80_m/0-25 а уже оттуда вышел на сайт самого автора разработки. Одним словом, некто продаёт как бы наборы для сборки такого приёмника, - своего рода радиоконструктор! А так-как цены указаны в гривнах, то не трудно догадаться откуда уши торчат?! Как бы там не было, но на сайте много фото и есть даже видео о сборке приёмника и даже демонстрация его работы. Даже если Вы не собираетесь контактировать с автором того сайта и расплачиваться с кем-то гривнами, то можете хотя бы послушать демонстрацию работы приёмника. И если Вы внимательны, то можете обратить внимание на некоторые неудобства в этом приёмнике! Он в основном предназначен только чтобы просто послушать, а не работать по-серьёзному в эфире!

Кстати, в Ютюбе есть видео:
это первая часть https://www.youtube.com/watch?v=8KhM0CwVxUc
а, это вторая https://www.youtube.com/watch?v=GUiuzEwpzPo

Продолжение темы в следующей мини-лекции «Сверхрегенератор»

Рецензии

Ежедневная аудитория портала Проза.ру - порядка 100 тысяч посетителей, которые в общей сумме просматривают более полумиллиона страниц по данным счетчика посещаемости, который расположен справа от этого текста. В каждой графе указано по две цифры: количество просмотров и количество посетителей.

Приемник предназначен для работы на частотах всех радиолюбительских диапазонов от 160 метров до 10 метров. Приемник собран по схеме прямого преобразования, имеет чувствительность не хуже 0,5 мкВ. Может принимать сигналы радиостанций, работающих телефоном (SSB) и телеграфом (CW). Органов управления приемником получается три -перестраиваемые одним двухсекционным конденсатором гетеродинный и входной контуры, регулятор чувствительности, регулятор громкости.

Картинка кликабельна


Сигнал от антенны поступает на входной контур, состоящий из набора последовательно включенных катушек L1-L6 и секции С1.1 переменного конденсатора С1. Конденсатор С18, включенный последовательно конденсатору С1.1 уменьшает его перекрытие по емкости.
Все катушки входного контура готовые высокочастотные дросселя промышленного производства. Их подстраивать не нужно. В процессе налаживания подстройку контура осуществляют подстроечным конденсатором С21 Контур перестраивается на диапазоны скачками с помощью секции S1.1 переключателя S1 (галетный переключатель с керамическими платами). Плавная настройка секцией С1.1 переменного конденсатора.
С входного контура сигнал поступает на УРЧ на двухзатворном полевом транзисторе VT1 типа BF966. Здесь можно использовать и отечественные двухзатворные полевые транзисторы, например, КП350. С помощью резистора R3 можно регулировать постоянное напряжение на втором затворе VT1, что изменяет коэффициент передачи каскада, и таким образом влияет на чувствительность.
Нагружен УРЧ высокочастотным трансформатором Т1, который необходим для подачи симметричного РЧ сигнала на симметричный вход преобразователя частоты на микросхеме А1.
Микросхема А1 типа SA612A (или её аналог NE612) предназначена для преобразователей частоты супергетеродинных приемных трактов связной аппаратуры. Здесь она работает почти по прямому назначению, - смеситель-демодулятор. «Почти» - потому что промежуточная частота нулевая, то есть, промежуточной частотой является демодулированный сигнал ЗЧ.
В гетеродине используется контур, состоящий из последовательно включенных катушек L7-L12 и секции С1.2 переменного конденсатора С1. Конденсатор С19, включенный последовательно конденсатору С1.2 уменьшает его перекрытие по емкости.
Все катушки гетеродинного контура готовые высокочастотные дросселя промышленного производства. Их подстраивать не нужно. В процессе налаживания подстройку контура осуществляют подстроечным конденсатором С22 Контур перестраивается на диапазоны скачками с помощью секции S1.2 переключателя S1 (галетный переключатель с керамическими платами). Плавная настройка -секцией С1.2 переменного конденсатора.
В связи с тем, что это приемник прямого преобразования, и «промежуточная» частота практически равна от нуля до нескольких килогерц, настройка гетеродинного и входного контуров практически совпадают.
Важный недостаток любого приемника прямого преобразования в высокой чувствительности к помехам в виде низкочастотных наводок с частотой электросети, которые поступают в приемник самыми разными путями. Причина этого кроится в самом принципе работы приемника прямого преобразования, основное усилиние происходит по НЧ, и поэтому УНЧ обладает большим коэффициентом усиления.
Но микросхема SA612A имеет противофазный выход преобразователя частоты. Если это использовать совместно с УНЧ с противофазным входом, то получается так, что УНЧ обладает большим коэффициентом усиления только при поступлении на его входы противофазных сигналов. А вот к синфазным сигналам, которые поступают не от преобразователя, а другими путями, он очень мало чувствителен. Таким образом, можно предельно снизить чувствительность приемника к наводкам.
Платой за столь эффективное подавление наводок является сложность регулятора громкости, в котором должен быть сдвоенный переменный резистор (R9).
Катушки L1-L12 - готовые ВЧ дроссели, покупные. Но при желании (или необходимости) их можно намотать самостоятельно, воспользовавшись одной из известных формул расчета.
ВЧ-трансформатор намотан на ферритовом кольце внешним диаметром 7 мм. Намотка сделана сложенным вдвое проводом ПЭВ 0,23. Всего - 50 витков. После намотки выводы разделаны и с помощью прозвонки определены выводы обмоток трансформатора.
Налаживание приемника состоит в подстройке С21 и С22 для того чтобы перекрывались все диапазоны. Еще нужно провести градуировку шкалы. В данном приемнике контура сделаны упрощенным способом, поэтому в каждом диапазоне перекрытие происходит с большим запасом. Этот недостаток, в принципе, можно устранить дополнительными корректирующими конденсаторами для каждого диапазона, но это сильно усложнит коммутации.

Приемник прямого преобразования выполнен по классической схеме, имеет два КВ диапазона: 40 и 80 метров. Возможен прием станций с однополосной (SSB), амплитудной (AM) модуляцией, телеграфных сигналов (CW). В качестве гетеродина используется синтезатор частоты

Входной сигнал с антенны подается на двухконтурный неперестраиваемый преселектор. Переключение диапазонов осуществляется переключателем SA1 типа П2К (два положения, три группы). Две группы контактов переключателя переключают преселектор выбранного диапазона, одна группа (SA1.2) переключает диапазон частот синтезатора, подается на его вход "BAND" (см. схему синтезатора по указанной ссылке). На VT1 реализован усилитель радиочастоты, с его выхода сигнал подается на диодный смеситель (VD1, 2. Все диоды в схеме 1N4148). На смеситель так же поступает напряжение гетеродина через повышающий трансформатор Т2 (разъем X3). Преобразование в смесителе по такой схеме происходит на удвоенной частоте гетеродина, т.е., например, для приема в диапазоне 3500-3800 кГц реальная частота гетеродина должна быть 1750-1900 кГц. В приемнике прямого преобразования промежуточная частота равна нулю, т.е. после смесителя имеем сразу сигнал низкой частоты. Выделенный звуковой сигнал пропускается через фильтр низкой частоты L5,C13,C16. Данный фильтр является основным селективным элементом приемника и определяет его избирательность. Частота среза около 3 кГц. Такой ширины полосы достаточно для передачи телефонного сигнала с достаточной разборчивостью речи. Далее сигнал НЧ поступает на основной усилительный элемент приемника - УНЧ, реализованный на транзисторах VT2,3,4. На входе установлен МОП-транзистор для электронной регулировки усиления. Проходная характеристика такого транзистора имеет форму, близкую к квадратичной, поэтому, при изменении смещения по постоянному току на затворе, усиление каскада меняется по закону, близкому к линейному. Регулировка возможна как ручная, так и автоматическая (АРУ). В качестве усилителя АРУ используется операционный усилитель U1. Отключение АРУ осуществляется переключателем SA2. Ручная регулировка усиления - R23. Усиленный сигнал НЧ поступает на выпрямитель VD3-VD4, среднее значение сигнала выделяется на конденсаторе С21 и подается на усилитель АРУ, который увеличивает или уменьшает смещение по постоянному току каскада на VT2, регулируя таким образом усиление и поддерживая постоянный средний уровень сигнала НЧ. Усиленный сигнал подается на потенциометр регулировки громкости R19 и далее на выход приемника. Напряжение АРУ выдается на разъем Х6 для подключения индикатора силы сигнала (S-метра). Цифровой S-метр реализован в схеме синтезатора.

Для прослушивания на головные телефоны я разработал простенькую схему усилителя мощности (по сути - усилитель тока, повторитель напряжения), его вполне достаточно для низкоомных наушников, которые обычно используются с различными мобильными гаджетами. Схема усилителя мощности:

Перейдем к конструкции.

Данные моточных узлов

L1-L4 намотаны на каркасах диаметром 4 мм с подстроечными ферритовыми сердечниками, заключены в экран.

L1, L3 - 17 витков, длина намотки - 5 мм. Эмалированный провод диаметром 0,2 мм.

L2, L4 - 45 витков, длина намотки - 8 мм. Эмалированный провод диаметром 0,1 мм.

Т1 - обе обмотки по 30 витков любого провода на ферритовом кольце 8*3,5*h3,3 (наружный диаметр*внутренний диаметр* высота кольца в мм) проницаемостью 50 (данные сердечников приблизительные, сердечники не покупались в магазине, брались из б/у хлама, размеры мерял линейкой, проницаемость - намоткой тестовой катушки и измерением индуктивности). Индуктивность каждой обмотки около 20 мкГн.

Т2 - первичная обмотка 20 витков, вторичная - 40 витков любого провода на кольце 8*3*h4,3 проницаемостью 100. Индуктивности первичной и вторичной обмоток около 30 мкГн и 120 мкГн соответственно.

Дроссель фильтра НЧ L5 - 150 витков эмалированного провода диаметром 0,1 мм на кольце 21*9,3*h7,5 проницаемостью 2500.

Все конденсаторы в схеме имеют вольтаж - 16В.

Узел преселектора выполнен на отдельной печатной плате. Всего в проекте три платы - преселектор, основной тракт и усилитель мощности.

Трансформаторы приклеил к плате термопистолетом. Впоследствии между РЧ и НЧ частью добавлена перегородка из жести для улучшения помехоустойчивости.

Настройка

Настройка преселектора производилась с помощью генератора качающейся частоты. Импровизированный ГКЧ легко получается из нашего синтезатора путем написания соответствующей программы. Файл GKCH.ino прикреплен к проекту. Диапазон 40/80 переключается так же, как и в программе синтезатора. Генератор подключается к первому контуру преселектора через последовательный резистор 1 кОм, выход преселектора нагружается резистором 1,2 кОм, далее подключается щуп-детектор и осциллограф. Щуп-детектор такой, найденный на просторах Сети:

В итоге, на экране осциллографа получим повторяющиеся "горбы" АЧХ. Вращением подстроечных сердечников соответствующих катушек (L1, L3 для диапазона 40 м, L2, L4 - для диапазона 80 м) добиваемся симметрии "горба" АЧХ относительно вертикальной оси и максимальной амплитуды.

Настройка основного тракта

Резистором R4 устанавливается ток покоя VT1 около 10 мА, измерить можно падение напряжения на резисторе R7, при токе 10 мА на нем упадет около 0,5 В.

Резистором R5 устанавливается режим по постоянному току каскада на VT2. Отключаем АРУ, движок R23 в крайнем правом положении по схеме. Напряжение на стоке VT2 должно быть в районе 4-5 В.

Резистором R11 устанавливается режим по постоянному току каскада на VT3, 4. Напряжение на коллекторе VT4 должно быть в районе 6-7 В.

Настройка усилителя мощности сводится к установке тока покоя транзисторов путем подбора R2. Ток покоя 5-10 мА.

Немного фото конструкции:

Несмотря на опасения, помехи от цифровой части практически не слышны, притом, что питается приемник от импульсного БП. Сравнивал характер помех с полностью аналоговым приемником с трансформаторным БП - шумы практически идентичные. Соединения по сигнальному тракту делал экранированным проводом. На правой стенке корпуса - вывод USB Arduino. Сзади - разъем питания, антенны и согласующий потенциометр R1. В качестве антенны использую "наклонный луч" - медный провод длиной около 20 метров со второго этажа многоэтажки на близлежащее дерево. В качестве противовеса - трубу отопления.

Фрагмент эфира (запись на микрофон смартфона с наушника приемника): скачать с Google Drive

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
U1 Микросхема К544УД1 1 В блокнот
VT1 Транзистор BF247A 1 В блокнот
VT2 MOSFET-транзистор

2N7000

1 В блокнот
VT3, VT4 Биполярный транзистор

BC337

2 В блокнот
VD1-VD4 Выпрямительный диод

1N4148

4 В блокнот
VD5 Стабилитрон 10 В 1 В блокнот
С1, С4 Конденсатор 510 пФ 2 В блокнот
С2, С6 Конденсатор 360 пФ 2 В блокнот
С3 Конденсатор 20 пФ 1 В блокнот
С5 Конденсатор 39 пФ 1 В блокнот
С7, С13, С16, С23 Конденсатор 0.15 мкФ 4 В блокнот
С8, С12, С17, С20 10 мкФ 4 В блокнот
С9, С10 Конденсатор 0.033 мкФ 2 В блокнот
С11, С19, С25 Конденсатор 1 мкФ 3 В блокнот
С14 Конденсатор 0.1 мкФ 1 В блокнот
С15, С22 Электролитический конденсатор 100 мкФ 2 В блокнот
С18, С21, С24 Электролитический конденсатор 470 мкФ 3 В блокнот
R1 Переменный резистор 820 Ом 1 В блокнот
R2, R8 Резистор

200 Ом

2 В блокнот
R3, R10, R14, R16 Резистор

1 кОм

4 В блокнот
R4, R15 Резистор

100 Ом

2 В блокнот
R5 Резистор

220 кОм

1 В блокнот
R6 Резистор

910 кОм

1 В блокнот
R7 Резистор

51 Ом

1 В блокнот
R9 Резистор

10 кОм

1 В блокнот
R11 Резистор

240 кОм

1 В блокнот
R12 Резистор

27 кОм

1 В блокнот
R13 Резистор

560 Ом

1 В блокнот
R17 Резистор

2 кОм

1 В блокнот
R18 Резистор

330 кОм

1 В блокнот
R19 Переменный резистор 47 кОм 1 В блокнот
R20, R22 Резистор

620 Ом

2 В блокнот
R21 Резистор

22 кОм

1 В блокнот
R23 Переменный резистор 10 кОм 1 В блокнот
SA1 Переключатель П2К 1 Два положения, три группы В блокнот
SA2 Выключатель 1 В блокнот
L1, L3 Катушка индуктивности 0.92 мкГн 2 В блокнот
L2, L4 Катушка индуктивности 4.5 мкГн 2 В блокнот
L5 Катушка индуктивности 50 мГн 1 В блокнот
Т1 Трансформатор 1:1 1 В блокнот
Т2 Трансформатор 1:2 1 В блокнот
Х1 Разьемная пара 2 вывода 1 В блокнот
Х3-Х5 Разьем 2 вывода 3 В блокнот
Х6 Разьем 1 вывод 1 В блокнот
Ant Антенна 1 В блокнот
Заземление 1 В блокнот
Усилитель НЧ
VT1 Биполярный транзистор

Приёмник прямого преобразования «Приятель-26»

(08.12.2016)

Примечание : я излагаю своё личное мнение. Нравится кому-то оно или нет - это другой вопрос. Но, я своё мнение никому не навязываю.

Традиционное обсуждение «Карманного приёмника для наблюдения QRP станций на 14060», особого интереса у меня не вызвало. Это, если не ошибаюсь 10-е обсуждение, все предыдущие успешно завершились на стадии разговоров. Ни малейших попыток что-то собрать, ни один из участников не предпринял.
В этот раз подключился Евгений UA4NU, а это уже кардинально меняет обстановку. Мы с Евгением «одной крови», раз Евгений заявил, что соберёт такой аппарат, значит соберёт!
Либо он ничего бы и не заявлял…
Я, естественно, тоже подключился. Но, я без заявлений, просто подключился…

Насчёт «карманного», это не ко мне, я претендую собрать «сравнительно портативный» и достаточно чувствительный приёмник. Обязательств я на себя никаких не брал, тема не мной поднята, поэтому я абсолютно спокойно и руководствуясь исключительно своими мотивациями и решениями , приступил.

Недавно мне попалось несколько штук МП101, они для меня дефицит! Кто не вникал, транзисторы МП101А с нормированным коэффициентом шума и нисколько не уступают знаменитым малошумящим П27А и П28А. При этом, МП101А имеет существенно ниже предельную частоту усиления, 0.5 мГц!
Для применения в приёмниках/ трансиверах прямого преобразования, эти транзисторы просто идеальны.

УНЧ прост по схеме, экономичен, обладает высоким усиление и налаживается предельно просто - нужно подобрать R4 и R3, что-бы на эммитере предвыходного транзистора было ровно половина напряжения питания, в данном случае это 6 вольт.

Подключаешь тестер и подбираешь резисторы. Задача, до смешного простая.

Место знаменитой LM386, в сравнении с этим усилителем, по моему мнению, в ближайшей урне! Вот конденсатор в цепи обратной связи, С1, желательно из старых - добрых «ленточных», например МБМ… В данной схеме очень импортные, очень красивые, элегантные, небольших размеров конденсаторы начинают работать не «конденсаторами», а «кварцам»! Генеруют сотни килогерц. Обнаружить можно только осциллографом, если заподозрите, что УНЧ работает мерзко: усиление поганое, сигнал мерзейший - металлический. «Плавали - знаем»!

Вот они эти конденсаторы, я их очень ценю и использую только по делу!

Рассмотрел возможность сборки супергетеродина, с кварцевым фильтром на 5741 кГц.

Плавную перестройку варикапами… Но, отказался, излишняя универсальность - нет смысла. Плавная перестройка неплохо, но придётся всё равно иметь дополнительный калибратор на 14060, иначе никак точно частоту не установить! Плавный гетеродин в районе 8320 кГц:


в полевых условиях - это угроза необходимости подстраиваться…

С УНЧ всё решено отлично, далее важный вопрос - смеситель ! «Детекторный ППП» к которым я отношу все аппараты, где входной контур нагружен примитивным диодным смесителем, на одном диоде, или транзисторе в виде диода я не рассматриваю, я их вычеркнул навсегда из своей практики! Входной контур должен быть высокодобротным, а смеситель балансным!

====================================================================

Детекторный приёмник. Контур сильно шунтируется нагрузкой, избирательность очень низкая.

Почти тот же детекторный приёмник, но это уже «приёмник прямого преобразования»!

Естественно это до предела упрощённые схемы, например, нужно, как минимум добавить ВЧ дроссель и УНЧ, но для объяснения, моего критического отношения достаточно!

Поэтому, ожидать уж слишком высокого качества работы данных вариантов приёмника прямого преобразования не следует…

==============================================================

Никакие уродования балансного смесителя в небалансный я не признаю. Поэтому балансный смеситель нужно нагружать на трансформатор с отводом от середины обмотки. Отлично, если попадётся согласующий трансформатор из УНЧ старых транзисторных приёмников, из польского телефонного аппарата попался великолепный трансформатор, в общем, любой подходящий. Смеситель можно выбирать из приличного ассортимента: 174ПС1, 435ПС1, 235ПС1, 526ПС1 импортные: NE602, NE612, буквы могут отличаться у разных фирм, главное цифры и т. д. Словом, микросхемы балансных смесителей работают, примерно одинаково и использовать можно любой подходящий и доступный.

Правее конденсатора МБМ видна микросхема смесителя, нагруженная на трансформатор, имеющий вывод от середины обмотки и правее катушка НЧ фильтра на входе усилителя.
С трудом себе представляю, что у кого-то всё это может не получится!

Понятно, что моё сообщение не адресовано к: «Vasja231», «Micha123», Alex-II, а к радиолюбителям, работающим в эфире .

https://pandia.ru/text/80/271/images/image015_17.jpg" width="617" height="466">

Двухполосный приём, для приёма 14060 гетеродин можно настроить на 14059, или 14061, это дело личного вкуса!

Настраиваю контур на нужную частоту, добиваясь, что бы подстроечный конденсатор контура был примерно в среднем положении, что бы иметь возможность подстраивать контур при подключении самых различных антенн.

Получилось: катушка диаметром 12 мм, 10 витков, емкость конденсатора 82 пф и подстроечник, в средем положении, примерно 20 пф, т. е примерно 100пф.
Катушка связи с антенной 3 витка, но это некритично и, на практике, можно добавить витков, или наоборот уменьшить, в зависимости от антенны. Если будет использоваться постоянная антенна, то можно подобрать катушку связи, если возникнет такое желание…

Но, вообще-то наличие подстроечного конденсатора для подстройки входного контура острую необходимость подбирать витки связи катушки с антенной снимает…

Вход сделан по следующему варианту. Истоковый повторитель не даёт усиления по напряжению, но очень хорошо изолирует контур от последующих каскадов, добротность контура получается высокой и настройка на частоту очень узкая, что и требуется!

Конструкция завершена!

Насчёт чувствительности:

При прикосновении пальца к антенному входу слышен шум эфира, это в 22.07 МСК на 14060. Приличная чувствительность! Но, естественно, основная проверка в лесах - полях, для этого ППП «Приятель-26» и предназначен!

10.12.2016 «Приятель-26» в поле.

Согласно моим взглядам, никакое словоблудие, на тему: «Ах, как хорошо работает аппарат!», не заменяет реальную проверку аппарата. (Правда, я вообще словоблудие на дух не переношу!)

Поэтому я отправляюсь в леса - поля. Я уже довольно много собрал «полевых» аппаратов, но каждое первое испытание всегда интересно и волнительно!

Никаких «вигвамов», палаток, всё честно, на ветру.

7 и на высотке довольно промозгло! (провод антенны на втором плане виден).

По стечению семейных обстоятельств, я могу прослушать только первый 5 минут рандеву, попросил коллег, у кого есть возможность, поработать раньше минут на 15, что бы я мог послушать. Правда, никто не отозвался…

Развёртываю радио, «Приятель» плюхается в снег, но не страшно!

В этот раз я проявил невероятную предусмотрительность! Не забыл карандаш и лист бумаги…

Так оживляет аппарат светодиод! «На палец», даже в полевых условиях шум эфира появляется!

Протягиваю метров 5-7 провода антенны.


Моя радио - позиция. Слабенькое, но всё - таки укрытие от ветра!

Станции проходят слабо, но проходят, принимаю, ура и всё такое!

Слышу обрывки фраз: «Анатолий, Евгений….». Работает аппарат и прилично!
Но… мне нужно убегать!! До дома ещё более километра.

Бесцеремонно сворачиваю радио. А что «Приятелю» в металлическом прочном корпусе сделается?

Прибежал, быстро включаю радио, фото мутное, фотоаппарат с мороза… Но, уже на 14060 тихо…


«Приятель», я в спешке, шваркнул в снег. Ему это по фигу!

Посмотрел, ура! Принимал я QRP станции и успешно!

Виктору UA1CEX громадная благодарность!

Косвенно слышал работу UA1ADP/, «дробь» не разобрал, кажется, работает из машины,

но я не уверен. Но, неважно!

Приёмник работает лучше, чем я рассчитывал!

За приличную работу данного варианта приёмника прямого преобразования отвечаю!

Друзья, до встречи в эфире!

73! UA1CEG Юрий Александров, д. Гарболово. Ленинградской области , Всеволожского района.







2024 © kubanteplo.ru.