Радиационный и тепловой баланс земной поверхности, атмосферы и земли в целом. Радиационный и тепловой балансы Состав теплового баланса земной поверхности


Поглощая лучистую энергию Солнца, Земля сама становится источником излучения. Однако радиация Солнца и радиация Земли существенно различны. Прямая, рассеянная и отраженная радиация Солнца имеет длину волн, заключающуюся в интервале от 0,17 до 2-4 мк, и называется коротковолновой радиацией. Нагретая поверхность земли в соответствии со своей температурой излучает радиацию в основном в интервале длин волн от 2-4 до 40 мк и называется длинноволновой. Вообще говоря, как радиация Солнца, так и радиация Земли имеют волны всех длин. Но основная часть энергии (99,9%) заключается в указанном интервале длин волн. Различие в длине волн радиации Солнца и Земли играет большую роль в тепловом режиме поверхности земли.

Таким образом, нагреваясь лучами Солнца, наша планета сама становится источником излучения. Испускаемые земной поверхностью длинноволновые, или тепловые, лучи, направленные снизу вверх, в зависимости от длины волны или беспрепятственно уходят через атмосферу, или задерживаются ею. Установлено, что излучение волн длиной 9-12 мк свободно уходит в межзвездное пространство, вследствие чего поверхность земли теряет некоторую часть своего тепла.

Для решения задачи теплового баланса земной поверхности и атмосферы следовало определить, какое количество солнечной энергии поступает в различные районы Земли и какое количество этой энергии преобразуется в другие виды.

Попытки рассчитать количество поступающей солнечной энергии на земную поверхность относятся к середине XIX века, после того как были созданы первые актинометрические приборы. Однако только в 40-х годах XX века началась широкая разработка задачи изучения теплового баланса. Этому способствовало широкое развитие актинометрической сети станций в послевоенные годы, особенно в период подготовки к Международному Геофизическому Году. Только в СССР число актинометрических станций к началу МГГ достигло 200. При этом значительно расширился объем наблюдений на этих станциях. Кроме измерения коротковолновой радиации Солнца, определялся радиационный баланс земной поверхности, т. е. разность между поглощенной коротковолновой радиацией и длинноволновым эффективным излучением подстилающей поверхности. На ряде актинометрических станций были организованы наблюдения за температурой и влажностью воздуха на высотах. Это позволило произвести вычисления затрат тепла на испарение и турбулентный теплообмен.

Помимо систематических актинометрических наблюдений, ведущихся на сети наземных актинометрических станций по однотипной программе, в последние годы проводятся экспериментальные работы по исследованию радиационных потоков в свободной атмосфере. С этой целью на ряде станций с помощью специальных радиозондов производятся систематические измерения баланса длинноволновой радиации на различных высотах в тропосфере. Эти наблюдения, а также данные о потоках радиации в свободной атмосфере, полученные с помощью свободных аэростатов, самолетов, геофизических ракет и искусственных спутников Земли, позволили изучить режим составляющих теплового баланса.

Используя материалы экспериментальных исследований и широко применяя расчетные методы, сотрудниками Главной геофизической обсерватории им. А. И. Воейкова Т. Г. Берлянд, Н. А. Ефимовой, Л. И. Зубенок, Л. А. Строкиной, К. Я. Винниковым и другими под руководством М. И. Будыко в начале 50-х годов впервые была построена серия карт составляющих теплового баланса для всего земного шара. Эта серия карт вначале была опубликована в 1955 г. В изданном Атласе содержались карты суммарного распределения солнечной радиации, радиационного баланса, затраты тепла на испарение и турбулентный теплообмен в среднем за каждый месяц и год. В последующие годы, в связи с получением новых данных, особенно за период МГГ, были уточнены данные составляющих теплового баланса и построена новая серия карт, которые были изданы в 1963 г.

Тепловой баланс земной поверхности и атмосферы, учитывая приток и отдачу тепла для системы Земля - атмосфера, отражает закон сохранения энергии. Чтобы составить уравнение теплового баланса Земля - атмосфера, следует учесть все тепло - получаемое и расходуемое,- с одной стороны, всей Землей вместе с атмосферой, а с другой - отдельно подстилающей поверхностью земли (вместе с гидросферой и литосферой) и атмосферой. Поглощая лучистую энергию Солнца, земная поверхность часть этой энергии теряет через излучение. Остальная часть расходуется на нагревание этой поверхности и нижних слоев атмосферы, а также на испарение. Нагревание подстилающей поверхности сопровождается теплоотдачей в почву, а если почва влажная, то одновременно происходит затрата тепла и на испарение почвенной влаги.

Таким образом, тепловой баланс Земли в целом складывается из четырех составляющих.

Радиационный баланс ( R ). Он определяется разностью между количеством поглощенной коротковолновой радиации Солнца и длинноволновым эффективным излучением.

Теплообмен в почве, характеризующий процесс теплопередачи между поверхностными и более глубокими слоями почвы (А). Этот теплообмен зависит от теплоемкости и теплопроводности почвы.

Турбулентный теплообмен между земной поверхностью и атмосферой (Р). Он определяется количеством тепла, которое подстилающая поверхность получает или отдает атмосфере в зависимости от соотношения между температурами подстилающей поверхности и атмосферы.

Тепло, затрачиваемое на испарение ( LE ). Оно определяется произведением скрытой теплоты парообразования ( L ) на испарение (Е).

Эти составляющие теплового баланса связаны между собою следующим соотношением:

R = A + P + LE

Расчеты составляющих теплового баланса позволяют определить, как преобразуется на поверхности земли и в атмосфере приходящая солнечная энергия. В средних и высоких широтах приток солнечной радиации летом положителен, зимой отрицателен. Согласно вычислениям южнее 39° с. ш. баланс лучистой энергии положителен в течение всего года, На широте около 50° на Европейской территории СССР баланс положителен с марта по ноябрь и отрицателен в течение трех зимних месяцев. На широте 80° положительный радиационный баланс наблюдается лишь в период май - август.

В соответствии с расчетами теплового баланса Земли суммарная солнечная радиация, поглощенная поверхностью земли в целом, составляет 43% от солнечной радиации, приходящей на внешнюю границу атмосферы. Эффективное излучение с земной поверхности равно 15% этой величины, радиационный баланс - 28%, затрата тепла на испарение - 23% и турбулентная теплоотдача - 5%.

Рассмотрим теперь некоторые результаты расчета составляющих теплового баланса для системы Земля - атмосфера. Здесь приведены четыре карты: суммарной радиации за год, радиационного баланса, затраты тепла на испарение и затраты тепла на нагревание воздуха путем турбулентного теплообмена, заимствованные из Атласа теплового баланса земного шара (под ред. М. И. Будыко). Из карты, изображенной на рисунке 10, следует, что наибольшие годовые величины суммарной радиации приходятся на засушливые зоны Земли. В частности, в Сахарской и Аравийской пустынях суммарная радиация за год превышает 200 ккал/см 2 , а в высоких широтах обоих полушарий она не превышает 60-80 ккал/см 2 .

На рисунке 11 приведена карта радиационного баланса. Легко видеть, что в высоких и средних широтах радиационный баланс возрастает в сторону низких широт, что связано с увеличением суммарной и поглощенной радиации. Интересно отметить, что, в отличие от изолиний суммарной радиации, изолинии радиационного баланса при переходе с океанов на материки разрываются, что связано с различием альбедо и эффективного излучения. Последние меньше для водной поверхности, поэтому радиационный баланс океанов превышает радиационный баланс материков.

Наименьшие годовые суммы (около 60 ккал/см 2) характерны для районов, где преобладает облачность, как и в сухих областях, где высокие значения альбедо и эффективного излучения уменьшают радиационный баланс. Наибольшие годовые суммы радиационного баланса (80-90 ккал/см 2) характерны для малооблачных, но сравнительно влажных тропических лесов и саванн, где приход радиации хотя и значителен, однако альбедо и эффективное излучение больше, чем в пустынных районах Земли.

Распределение годовых величин испарения представлено на рисунке 12. Затрата тепла на испарение, равная произведению величины испарения на скрытую теплоту парообразования (L Е), определяется в основном величиной испарения, так как скрытая теплота парообразования в естественных условиях меняется в небольших пределах и в среднем равна 600 кал на грамм испаряющейся воды.

Как следует из приведенного рисунка, испарение с суши в основном зависит от запасов тепла и влаги. Поэтому максимальные годовые суммы испарения с поверхности суши (до 1000 мм) имеют место в тропических широтах, где значительные тепловые




ресурсы сочетаются с большим увлажнением. Однако океаны являются наиболее важными источниками испарения. Максимальные величины его здесь достигают 2500-3000 мм. При этом наибольшее испарение происходит в районах со сравнительно высокими значениями температуры поверхностных вод, в частности в зонах теплых течений (Гольфстрим, Куро-Сиво и др.). Наоборот, в зонах холодных течений величины испарения небольшие. В средних широтах существует годовой ход испарения. При этом, в отличие от суши, максимальное испарение на океанах наблюдается в холодное время года, когда сочетаются большие вертикальные градиенты влажности воздуха с повышенными скоростями ветра.

Турбулентный теплообмен подстилающей поверхности с атмосферой зависит от радиационных условий и условий увлажнения. Поэтому наибольшая турбулентная передача тепла осуществляется в тех районах суши, где сочетается большой приток радиации с сухостью воздуха. Как видно из карты годовых величин турбулентного теплообмена (рис. 13), это зоны пустынь, где величина его достигает 60 ккал/см 2 . Малы величины турбулентного теплообмена в высоких широтах обоих полушарий, а также, на океанах. Максимумы годовых величин можно обнаружить в зоне теплых морских течений (более 30 ккал/см 2 год), где создаются большие разности температур между водой и воздухом. Поэтому наибольшая теплоотдача на океанах происходит в холодную часть года.

Тепловой баланс атмосферы определяется поглощением коротковолновой и корпускулярной радиации Солнца, длинноволнового излучения, лучистым и турбулентным теплообменом, адвекцией тепла, адиабатическими процессами и др. Данные о приходе и расходе солнечного тепла используются метеорологами для объяснения сложной циркуляции атмосферы и гидросферы, тепло- и влагооборота и многих других процессов и явлений, происходящих в воздушной и водной оболочках Земли.

— Источник—

Погосян, Х.П. Атмосфера Земли/ Х.П. Погосян [и д.р.]. – М.: Просвещение, 1970.- 318 с.

Post Views: 1 223

Радиационный баланс представляет собой разность между приходом и расходом лучистой энергии, поглощаемой и излучаемой поверхностью Земли.

Радиационный баланс - алгебраическая сумма потоков радиации в определённом объёме или на определённой поверхности. Говоря о радиационном балансе атмосферы или системы «Земля – атмосфера», чаще всего подразумевают радиационный баланс земной поверхности, определяющий теплообмен на нижней границе атмосферы. Он представляет собой разность между поглощённой суммарной солнечной радиацией и эффективным излучением земной поверхности.

Радиационный баланс представляет собой разность между приходом и расходом лучистой энергии, поглощаемой и излучаемой поверхностью Земли.

Радиационный баланс является важнейшим климатическим фактором, так как от его величины в сильной степени зависит распределение температуры в почве и прилегающих к ней слоях воздуха. От него зависят физические свойства масс воздуха, перемещающихся по Земле, а также интенсивность испарения и таяния снега.

Распределение годовых значений радиационного баланса на поверхности земного шара неодинаково: в тропических широтах эти значения доходят до 100... 120 ккал/(см2-год), а максимальные (до 140 ккал/(см2 год)) наблюдаются у северо-западных берегов Австралии). В пустынных и засушливых районах значения радиационного баланса ниже по сравнению с районами достаточного и избыточного увлажнения на тех же широтах. Это вызывается повышением альбедо и увеличением эффективного излучения в связи с большой сухостью воздуха и малой облачностью. В умеренных широтах значения радиационного баланса быстро уменьшаются по мере возрастания широты вследствие убывания суммарной радиации.

В среднем за год суммы радиационного баланса для всей поверхности земного шара оказываются положительными, за исключением районов с постоянным ледяным покровом (Антарктика, центральная часть Гренландии и др.).

Энергия, измеряемая величиной радиационного баланса, частично затрачивается на испарение, частично передается воздуху и, наконец, некоторое количество энергии уходит в почву и идет на ее нагревание. Таким образом, общий приход-расход тепла для поверхности Земли, называемый тепловым балансом, можно представить в виде следующего уравнения:

Здесь В - радиационный баланс, М - поток тепла между поверхностью Земли и атмосферой, V - затрата тепла на испарение (или выделение тепла при конденсации), Т - теплообмен между поверхностью почвы и глубинными слоями.

Рисунок 16 – Воздействие солнечной радиации на поверхность Земли

В среднем за год почва практически отдает тепла в воздух столько же, сколько и получает, поэтому в годовых выводах теплооборот в почве равен нулю. Затраты тепла на испарение распределяются на поверхности земного шара весьма неравномерно. На океанах они зависят от количества солнечной энергии, поступающей на поверхность океана, а также от характера океанических течений. Теплые течения увеличивают расход тепла на испарение, холодные же уменьшают его. На материках затраты тепла на испарение определяются не только количеством солнечной радиации, но и запасами влаги, содержащейся в почве. При недостатке влаги, вызывающем сокращение испарения, затраты тепла на испарение снижаются. Поэтому в пустынях и полупустынях они значительно уменьшаются.

Практически единственным источником энергии для всех физических процессов, развивающихся в атмосфере, является солнечная радиация. Главная особенность радиационного режима атмосферы т. н. парниковый эффект: атмосфера слабо поглощает коротковолновую солнечную радиацию (большая её часть достигает земной поверхности), но задерживает длинноволновое (целиком инфракрасное) тепловое излучение земной поверхности, что значительно уменьшает теплоотдачу Земли в космическое пространство и повышает её температуру.

Приходящая в атмосферу солнечная радиация частично поглощается в атмосфере главным образом водяным паром, углекислым газом, озоном и аэрозолями и рассеивается на частицах аэрозоля и на флуктуациях плотности атмосферы. Вследствие рассеяния лучистой энергии Солнца в атмосфере наблюдается не только прямая солнечная, но и рассеянная радиация, в совокупности они составляют суммарную радиацию. Достигая земной поверхности, суммарная радиация частично отражается от неё. Величина отражённой радиации определяется отражательной способностью подстилающей поверхности, т. н. альбедо. За счёт поглощённой радиации земная поверхность нагревается и становится источником собственного длинноволнового излучения, направленного к атмосфере. В свою очередь, атмосфера также излучает длинноволновую радиацию, направленную к земной поверхности (т. н. противоизлучение атмосферы) ив мировое пространство (т. н. уходящее излучение). Рациональный теплообмен между земной поверхностью и атмосферы определяется эффективным излучением - разностью между собственным излучением поверхности Земли и поглощённым ею противоизлучением атмосферы. Разность между коротковолновой радиацией, поглощённой земной поверхностью, и эффективным излучением называется радиационным балансом.

Преобразования энергии солнечной радиации после её поглощения на земной поверхности и в атмосфере составляют тепловой баланс Земли. Главный источник тепла для атмосферы земная поверхность, поглощающая основную долю солнечной радиации. Поскольку поглощение солнечной радиации в атмосфере меньше потери тепла из атмосферы в мировое пространство длинноволновым излучением, то радиационный расход тепла восполняется притоком тепла к атмосфере от земной поверхности в форме турбулентного теплообмена и приходом тепла в результате конденсации водяного пара в атмосфере. Так как итоговая величина конденсации во всей атмосфере равна количеству выпадающих осадков, а также величине испарения с земной поверхности, приход конденсационного тепла в атмосфере численно равен затрате тепла на испарение на поверхности Земли.

Чтобы правильно оценивать степень нагрева и охлаждения различных земных поверхностей, рассчитывать испарение на , определять изменения влагозапаса в почве, разрабатывать методы по прогнозированию замерзания , а также оценивать влияние мелиоративных работ на климатические условия приземного слоя воздуха, необходимы данные о тепловом балансе земной поверхности.

Земная поверхность непрерывно получает и теряет тепло в результате воздействия разнообразных потоков коротковолновой и длинноволновой радиации. Поглощая в большей или меньшей степени суммарную радиацию и встречное излучение , земная поверхность нагревается и излучает длинноволновую радиацию, а значит, теряет тепло. Величиной, характеризующей потерю тепла земной
поверхностью, является эффективное излучение. Оно равно разности между собственным излучением земной поверхности и встречным излучением атмосферы. Поскольку встречное излучение атмосферы всегда несколько меньше земного, то эта разность положительна. В дневные часы эффективное излучение перекрывается поглощенной коротковолновой радиацией. Ночью же, при отсутствии коротковолновой солнечной радиации, эффективное излучение понижает температуру земной поверхности. В облачную погоду в связи с увеличением встречного излучения атмосферы эффективное излучение гораздо меньше, чем в ясную. Меньше и ночное охлаждение земной поверхности. В средних широтах земная поверхность теряет через эффективное излучение примерно половину того количества тепла, которое они получает от поглощенной радиации.

Приход и расход лучистой энергии оценивают величиной радиационного баланса земной поверхности. Он равен разности между поглощенной и эффективным излучением, от него зависит тепловое состояние земной поверхности - ее нагревание или охлаждение. Днем почти все время положителен, т. е. приход тепла превышает расход. Ночью радиационный баланс отрицателен и равен эффективному излучению. Годовые значения радиационного баланса земной поверхности, за исключением самых высоких широт, повсюду положительны. Этот избыток тепла расходуется на нагревание атмосферы путем турбулентной теплопроводности, на испарение, на теплообмен с более глубокими слоями почвы или воды.

Если рассматривать температурные условия за длительный период (год или лучше ряд лет), то земная поверхность, атмосфера в отдельности и система «Земля - атмосфера» находятся в состоянии теплового равновесия. Их средняя температура из года в год мало меняется. В соответствии с законом сохранения энергии можно считать, что алгебраическая сумма потоков тепла, приходящих на земную поверхность и уходящих от нее равна нулю. Это и есть уравнение теплового баланса земной поверхности. Его смысл состоит в том, что радиационный баланс земной поверхности уравновешивается нерадиационной передачей тепла. В уравнении теплового баланса, как правило, не учитываются (ввиду их малости) такие потоки, как тепло, переносимое выпадающими осадками, расход энергии на фотосинтез, приход тепла от окисления биомассы, а также расход тепла на таяние льда или снега, приход тепла от замерзания воды.

Тепловой баланс системы «Земля — атмосфера» за длительный период также равен нулю, т. е. Земля как планета находится в тепловом равновесии: приходящая на верхнюю границу атмосферы солнечная радиация уравновешивается уходящей в космос радиацией с верхней границы атмосферы.

Если принять приходящую на верхнюю границу атмосферы за 100%, то из этого количества 32% рассеивается в атмосфере. Из них 6% уходит обратно в мировое пространство. Следовательно, к земной поверхности в виде рассеянной радиации поступает 26%; 18% радиации поглощается озоном, аэрозолями и идет на нагревание атмосферы; 5% поглощается облаками; 21% радиации уходит в космос в результате отражения от облаков. Таким образом, приходящая к земной поверхности радиация составляет 50%, из которых на долю прямой радиации приходится 24%; 47% поглощается земной поверхностью, а 3% приходящей радиации отражается обратно в мировое пространство. В результате с верхней границы атмосферы в космическое пространство уходит 30% солнечной радиации. Эту величину называют планетарным альбедо Земли. Для системы «Земля атмосфера» через верхнюю границу атмосферы уходит обратно в космос 30% отраженной и рассеянной солнечной радиации, 5% земного излучения и 65% излучения атмосферы, т. е. всего 100%.

ТЕПЛОВОЙ БАЛАНС ЗЕМНОЙ ПОВЕРХНОСТИ

ТЕПЛОВОЙ БАЛАНС ЗЕМНОЙ ПОВЕРХНОСТИ алгебраическая сумма потоков тепла, приходящих на земную поверхность и уходящих от нее. Выражается уравнением:

где R - радиационный баланс земной поверхности; P - турбулентный поток тепла между земной поверхностью и атмосферой; LE - затрата тепла на испарение; В - поток тепла от земной поверхности в глубь почвы или воды или обратно. Соотношение компонентов баланса изменяется во времени в зависимости от свойств подстилающей поверхности и географические широты места. Характер теплового баланса земной поверхности и его энергетический уровень определяют особенности и интенсивность большинства экзогенных процессов. Данные о тепловом балансе земной поверхности играют большую роль в изучении изменений климата, географических зональности, термического режима организмов.

Экологический энциклопедический словарь. - Кишинев: Главная редакция Молдавской советской энциклопедии . И.И. Дедю . 1989 .


  • ТЕПЛОВОЕ ИЗЛУЧЕНИЕ
  • ТЕПЛОВОЙ БАЛАНС СИСТЕМЫ ЗЕМЛЯ-АТМОСФЕРА

Смотреть что такое "ТЕПЛОВОЙ БАЛАНС ЗЕМНОЙ ПОВЕРХНОСТИ" в других словарях:

    тепловой баланс земной поверхности - Алгебраическая сумма потоков тепла, приходящих к земной поверхности и излучаемых ею … Словарь по географии

    Тепловой баланс Земли, соотношение прихода и расхода энергии (лучистой и тепловой) на земной поверхности, в атмосфере и в системе Земля атмосфера. Основным источником энергии для подавляющего большинства физических, химических и биологических… …

    ТЕПЛОВОЙ БАЛАНС - земной поверхности алгебраическая сумма потоков тепла, приходящих на земную поверхность и уходящих от нее. Выражается уравнением: R + P + LE + B=0, где R радиационный баланс земной поверхности; P турбулентный поток тепла между земной… … Экологический словарь

    I Тепловой баланс сопоставление прихода и расхода (полезно использованной и потерянной) теплоты в различных тепловых процессах (См. Тепловой процесс). В технике Т. б. используется для анализа тепловых процессов, осуществляющихся в паровых … Большая советская энциклопедия

    Большой Энциклопедический словарь

    Сопоставление прихода и расхода тепловой энергии при анализе тепловых процессов. Составляется как при изучении природных процессов (тепловой баланс атмосферы, океана, земной поверхности и Земли в целом и др.), так и в технике в различных тепловых … Энциклопедический словарь

    Сопоставление прихода и расхода тепловой энергии при анализе тепловых процессов. Составляется как при изучении природных процессов (Т. б. атмосферы, океана, земной поверхности и Земли в целом и др.), так и в технике в разл. тепловых устройствах… … Естествознание. Энциклопедический словарь

    - (франц. balance, от balancer качать). 1) равновесие. 2) в бухгалтерии сведение счетов по приходу и расходу сумм для выяснения положения дела. 3) результат сравнения ввозной и вывозной торговли какой либо страны. Словарь иностранных слов, вошедших … Словарь иностранных слов русского языка

    Атмосферы и подстилающей поверхности, сумма прихода и расхода лучистой энергии, поглощаемой и излучаемой атмосферой и подстилающей поверхностью (См. Подстилающая поверхность). Для атмосферы Р. б. состоит из приходной части поглощённой… … Большая советская энциклопедия

    Земля (от общеславянского зем пол, низ), третья по порядку от Солнца планета Солнечной системы, астрономический знак Å или, ♀. I. Введение З. занимает пятое место по размеру и массе среди больших планет, но из планет т. н. земной группы, в… … Большая советская энциклопедия

Остановимся сначала на тепловых условиях земной поверхности и самых верхних слоев почвы и водоемов. Это необходимо потому, что нижние слои атмосферы нагреваются и охлаждаются больше всего путем радиационного и нерадиационного обмена теплом с верхними слоями почвы и воды. Поэтому изменения температуры в нижних слоях атмосферы прежде всего определяются изменениями температуры земной поверхности, следуют за этими изменениями.

Земная поверхность, т.е. поверхность почвы или воды (а также растительного, снежного, ледяного покрова), непрерывно и разными способами получает и теряет тепло. Через земную поверхность тепло передается вверх – в атмосферу и вниз – в почву или в воду.

Во-первых, на земную поверхность поступают суммарная радиация и встречное излучение атмосферы. Они в большей или меньшей степени поглощаются поверхностью, т.е. идут на нагревание верхних слоев почвы и воды. В то же время земная поверхность излучает сама и тем самым теряет тепло.

Во-вторых, к земной поверхности приходит тепло сверху, из атмосферы, путем турбулентной теплопроводности. Тем же способом тепло уходит от земной поверхности в атмосферу. Путем теплопроводности тепло также уходит от земной поверхности вниз, в почву и воду, либо приходит к земной поверхности из глубины почвы и воды.

В-третьих, земная поверхность получает тепло при конденсации на ней водяного пара из воздуха или теряет тепло при испарении с нее воды. В первом случае выделяется скрытая теплота, во втором теплота переходит в скрытое состояние.

На менее важных процессах (например, затратах тепла на таяние снега, лежащего на поверхности, или распространении тепла в глубь почвы вместе с водой осадков) останавливаться не будем.

Будем считать земную поверхность идеализированной геометрической поверхностью, не имеющей толщины, теплоемкость которой, следовательно, равна нулю. Тогда ясно, что в любой промежуток времени от земной поверхности будет уходить вверх и вниз в совокупности такое же количество тепла, какое она за это же время получает сверху и снизу. Естественно, что если рассматривать не поверхность, а некоторый слой земной поверхности, то здесь равенства приходящих и уходящих потоков тепла может и не быть. В таком случае избыток приходящих потоков тепла над уходящими потоками в соответствии с законом сохранения энергии пойдет на нагревание этого слоя, а в обратном случае - на его охлаждение.

Итак, алгебраическая сумма всех приходов и расходов тепла на земной поверхности должна быть равной нулю – это уравнение теплового баланса земной поверхности. Чтобы написать уравнение теплового баланса, объединим поглощенную радиацию и эффективное излучение в радиационный баланс:

B = (S sin h + D )(1 – A ) – E s .

Приход тепла из воздуха или отдачу его в воздух путем теплопроводности обозначим буквой Р . Такой же приход или расход путем теплообмена с более глубокими слоями почвы или воды обозначим G. Потерю тепла при испарении или приход его при конденсации на земную поверхность обозначим LE , где L удельная теплота испарения и Е – масса испарившейся или сконденсировавшейся воды. Вспомним еще одну составляющую – энергию, пошедшую на фотосинтетические процессы – ФАР, впрочем, весьма маленькую в сравнении с остальными, поэтому в большинстве случаев ее не указывают в уравнении. Тогда уравнение теплового баланса земной поверхности примет вид

В + Р + G + LE + Q ФАР = 0 или В + Р + G + LE = 0

Можно еще отметить, что смысл уравнения состоит в том, что радиационный баланс на земной поверхности уравновешивается нерадиационной передачей тепла.

Уравнение теплового баланса действительно для любого времени, в том числе и для многолетнего периода.

Из того, что тепловой баланс земной поверхности равен нулю, не следует, что температура поверхности не меняется. Если передача тепла направлена вниз, то тепло, приходящее к поверхности сверху и уходящее от нее вглубь, в значительной части остается в самом верхнем слое почвы или воды – в так называемом деятельном слое. Температура этого слоя, следовательно, и температура земной поверхности при этом возрастают. При передаче тепла через земную поверхность снизу вверх, в атмосферу, тепло уходит, прежде всего, из деятельного слоя, вследствие чего температура поверхности падает.

От суток к суткам и от года к году средняя температура деятельного слоя и земной поверхности в любом месте меняется мало. Это значит, что за сутки в глубь почвы или воды попадает днем столько же тепла, сколько уходит из нее ночью. Так как за летние сутки тепла уходит вниз все-таки больше, чем приходит снизу, слои почвы и воды и их поверхность день ото дня нагреваются. Зимой происходит обратный процесс. Сезонные изменения прихода-расхода тепла в почве и воде за год почти уравновешиваются, и средняя годовая температура земной поверхности и деятельного слоя год от года меняется мало.

Существуют резкие различия в нагревании и тепловых особенностях поверхностных слоев почвы и верхних слоев водных бассейнов. В почве тепло распространяется по вертикали путем молекулярной теплопроводности, а в легкоподвижной воде – также и путем турбулентного перемешивания водных слоев, намного более эффективного. Турбулентность в водоемах обусловлена, прежде всего, волнением и течениями. В ночное время суток и в холодное время года к такого рода турбулентности присоединяется термическая конвекция: охлажденная на поверхности вода опускается вниз вследствие возросшей плотности и замещается более теплой водой из нижних слоев. В океанах и морях некоторую роль в перемешивании слоев и в связанной с ним передаче тепла играет также испарение. При значительном испарении с поверхности моря верхний слой воды становится более соленым и поэтому более плотным, вследствие чего вода опускается с поверхности в глубину. Кроме того, радиация глубже проникает в воду в сравнении с почвой. Наконец, теплоемкость воды более значительна, чем почвы, и одно и то же количество тепла нагревает массу воды до меньшей температуры, чем такую же массу почвы.

В результате суточные колебания температуры в воде распространяются на глубину порядка десятков метров, а в почве – менее одного метра. Годовые колебания температуры в воде распространяются на глубину сотен метров, а в почве – только на 10–20 м.

Итак, тепло, приходящее днем и летом на поверхность воды, проникает до значительной глубины и нагревает большую толщу воды. Температура верхнего слоя и самой поверхности воды повышается при этом мало. В почве приходящее тепло распределяется в тонком верхнем слое, который сильно нагревается. Член G в уравнении теплового баланса для воды гораздо больше, чем для почвы, а P соответственно меньше.

Ночью и зимой вода теряет тепло из поверхностного слоя, но взамен его приходит накоп-ленное тепло из нижележащих слоев. Поэтому температура на поверхности воды понижается медленно. На поверхности почвы температура при отдаче тепла падает быстро: тепло, накопленное в тонком верхнем слое, быстро из него и уходит без восполнения снизу.

В результате днем и летом температура на поверхности почвы выше, чем температура на поверхности воды; ночью и зимой ниже. Это значит, что суточные и годовые колебания температуры на поверхности почвы больше, и значительно больше, чем на поверхности воды.

Вследствие указанных различий в распространении тепла водный бассейн за теплое время года накапливает в достаточно мощном слое воды большое количество тепла, которое отдает в атмосферу в холодный сезон. Почва в течение теплого сезона отдает по ночам большую часть того тепла, которое получает днем, и мало накапливает его к зиме. В результате температура воздуха над морем летом ниже, а зимой выше, чем над сушей.


Оглавление
Климатология и метеорология
ДИДАКТИЧЕСКИЙ ПЛАН
Метеорология и климатология
Атмосфера, погода, климат
Метеорологические наблюдения
Применение карт
Метеорологическая служба и Всемирная Метеорологическая Организация (ВМО)
Климатообразующие процессы
Астрономические факторы
Геофизические факторы
Метеорологические факторы
О солнечной радиации
Тепловое и лучистое равновесие Земли
Прямая солнечная радиация
Изменения солнечной радиации в атмосфере и на земной поверхности
Явления, связанные с рассеянием радиации
Суммарная радиация, отражение солнечной радиации, поглощенная радиация, ФАР, альбедо Земли
Излучение земной поверхности
Встречное излучение или противоизлучение
Радиационный баланс земной поверхности
Географическое распределение радиационного баланса
Атмосферное давление и барическое поле
Барические системы
Колебания давления
Ускорение воздуха под действием барического градиента
Отклоняющая сила вращения Земли
Геострофический и градиентный ветер
Барический закон ветра
Фронты в атмосфере
Тепловой режим атмосферы
Тепловой баланс земной поверхности
Суточный и годовой ход температуры на поверхности почвы
Температуры воздушных масс
Годовая амплитуда температуры воздуха
Континентальность климата
Облачность и осадки
Испарение и насыщение
Влажность
Географическое распределение влажности воздуха
Конденсация в атмосфере
Облака
Международная классификация облаков
Облачность, ее суточный и годовой ход
Осадки, выпадающие из облаков (классификация осадков)
Характеристика режима осадков
Годовой ход осадков
Климатическое значение снежного покрова
Химия атмосферы
Химический состав атмосферы Земли
Химический состав облаков
Химический состав осадков






2024 © kubanteplo.ru.