Вклад российских учёных в развитии биологических наук. Краткие биографии некоторых известных ученых-химиков Сообщение на тему ученые и их вклад


АРРЕНИУС Сванте (19.11.1859-02.Х. 1927) родился в Швеции в име­нии Вейк, недалеко от Упсалы, где его отец служил управляющим. Окончил в 1878 г. Упсальский университет и получил степень кандидата философии. В 1881 -1883 гг. занимался у профессора Э. Эдлунда в Физическом институте академии наук в Стокгольме, где наряду с другими проблемами изучал проводимость очень разбавленных растворов солей.

В 1884 г. Аррениус защитил диссертацию на тему «Исследование проводимости электролитов». По его словам, она была преддверием теории электролитической диссоциации. Работа не получила той высокой оценки, которая открыла бы Аррениусу возможность стать доцентом физики в Упсальском университете. Но восторженный отзыв немецкого физикохимика В.Оствальда и особенно его визит к Аррениусу в Упсалу склонили университетское начальство учредить доцентуру по физической химии и предоставить ее Аррениусу. Он проработал в Упсале год.

По рекомендации Эдлунда в 1885 г. Аррениусу была предоставлена заграничная командировка. В это время он стажировался у В. Оствальда в Рижском политехническом институте (1886), Ф. Кольрауша в Вюрцбурге (1887), Л. Больцмана в Граце (1887), Я. Вант-Гоффа в Амстердаме (1888).

Под влиянием Вант-Гоффа Аррениус заинтересовался вопросами химической кинетики - учения о химических процессах и законах их протекания. Он высказал мнение, что скорость химической реакции не определяется числом столкновений между молекулами в единицу времени, как считали в то время. Аррениус утверждал (1889), что лишь малая часть столкновений приводит к взаимодействию между молекулами. Он высказал предположение: для того чтобы произошла реакция, молекулы должны обладать энергией, превышающей ее среднее значение при данных условиях. Эту дополнительную энергию он назвал энергией активации данной реакции. Аррениус показал, что число активных молекул возрастает с увеличением температуры. Установленную зависимость он выразил в виде уравнения, которое называют теперь уравнением Аррениуса и которое стало одним из основных уравнений химической кинетики.

С 1891 г. Аррениус преподает в Стокгольмском университете. В 1895 г. он стал профессором, а в 1896-1902 гг. был ректором этого университета.

С 1905 по 1927 г. Аррениус - директор Нобелевского института (Стокгольм). В 1903 г. он был удостоен Нобелевской премии «в признание особого значения теории электролитической диссоциации для развития химии».

Аррениус был членом академий многих стран, в том числе Петербургской (с 1903 г.), почетным членом Академии наук СССР (1926).

БАХ Алексей Николаевич (17.111.1857-13.VJ946) - биохимик и революционный деятель. Родился в Золотоноше, небольшом городке Полтавской губернии, в семье техника-винокура. Окончил Киевскую Вторую классическую гимназию, учился в Киевском университете (1875-1878); был исключен из университета за участие в политических сходках и сослан в Белозерск Новгородской губернии. Затем по болезни (обнаружился туберкулезный процесс в лёгких) его перевели в Бахмут Екатеринославской губернии.


В 1882 г., вернувшись в Киев, восстановился в университете. Но уже практически не занимался научной работой, полностью посвятив себя революционной деятельности (был одним из создателей киевской организации «Народная воля»). В 1885 г. вынужден эмигрировать за границу.

Первый год пребывания в Париже был, очевидно, самым тяжелым в его жизни. Только к концу года он смог наконец-то найти работу: переводил статьи для журнала «Монитер сиентифик» («Научный вестник»). С 1889г. стал постоянным сотрудником этого журнала, делая обзоры по химической промышленности и патентам.

В 1887 г. резко обострился туберкулезный процесс. Состояние Баха было очень тяжелым. Он вспоминал впоследствии, что один из членов редакции журнала «Монитер сиентифик» даже заранее подготовил некролог. Его выходили друзья - студенты-медики. В 1888 г. по настоянию врачей поехал в Швейцарию. Здесь познакомился с 17-летней А. А. Червен-Водали, которая тоже лечилась от туберкулеза легких. В 1890 г. они поженились, несмотря на возражения отца невесты. (Как пишет Л. А. Бах: «...старик Червен-Водали никак не хотел согласиться на то, чтобы его дочь-дворянка вышла замуж за человека мещанского происхождения, неокончившего курса студента, революционера, государственного преступника...»)

С 1890 г. благодаря счастливой встрече с Полем Шюценберже (руководителем кафедры неорганической химии в Коллеж де Франс, президентом Французского химического общества) А.Н. Бах начал работать в Коллеж де Франс, основанном в 1530 г., центре свободного научного творчества в Париже. В нем работали и читали лекции многие выдающиеся ученые, например Андре Мари Ампер, Марселей Бертло, позднее Фредерик Жолио-Кюри. Для того чтобы вести в нем исследования, не требуется никаких дипломов. Работа там в то время не оплачивалась и не давала никаких прав на получение ученых степеней.

В Коллеж де Франс Бах выполнил первые экспериментальные исследования, посвященные изучению химизма ассимиляции углекислоты зелеными растениями. Здесь он проработал до 1894 г. В 1891 г. с женой несколько месяцев провел в США - вводил на винокуренных заводах округа Чикаго усовершенствованный способ брожения. Но за проведенную работу заплатили меньше, чем полагалось по договору. Попытки устроиться на работу в другом месте не увенчались успехом, и супруги вернулись в Париж.

В Париже Бах продолжил работу в Коллеж де Франс и журнале. После ареста полицией в Париже вынужден был переехать в Швейцарию. В Женеве прожил с 1894 по 1917 г. С одной стороны, этот город ему подходил климатически (из-за периодически обострявшегося процесса в легких врачи рекомендовали ему жить в теплом и мягком климате). С другой стороны вые приехал В. И. Ленин и потом бывал неоднократно. Кроме того, в Женеве находился университет с естественными факультетами и громадной библиотекой.

Бах устроил себе здесь домашнюю лабораторию, в которой провел многочисленные эксперименты, посвященные пероксидным соединениям и их роли в окислительных процессах в живой клетке. Частично эти работы он выполнил совместно с ботаником и химиком Р. Шода, работавшим в Женевском университете. Бах продолжил также сотрудничество с журна­лом «Монитер сиентифик».

Научные исследования Баха принесли ему мировую известность. С уважением к нему отнеслись и ученые Женевского университета: он участвовал в заседаниях кафедры химии, был избран в состав Женевского общества физических и естественных наук (а в 1916 г. его избрали председателем). В начале 1917 г. Лозаннский университет присудил Баху почетную степень доктора honoris causa (по совокупности работ). «Honoris causa» - это одна из видов присуждения почетной ученой степени (перевод с лат. - «ради почета»).

Вскоре в России произошла революция, и Бах сразу же вернулся на Родину. В 1918 г. организовал в Москве, в Армянском переулке, Центральную химическую лабораторию при ВСНХ РСФСР. В 1921 г. она была преобразована в Химический институт им. Л. Я. Карпова (с 1931 г. - Физико-химический институт им. Л. Я. Карпова). Директором этого института ученый оставался до конца своей жизни.

Бах считал необходимым проводить специальные биохимические исследования в рамках решения проблем медицинской химии. Поэтому по его инициативе в 1921 г. в Москве был открыт первый в Советской России Биохимический институт Наркомздрава (на Воронцовом поле), куда перешла группа сотрудников из Физико-химического института. Исследования были направлены в основном на удовлетворение практических нужд медицины и ветеринарии. В институте работали четыре отдела: обмена веществ, энзимологии, биохимии микробов и биохимических методик. Здесь Бах вел исследования в следующих направлениях: первый цикл работ касался изучения ферментов крови, второй - продуктов распада белков в сыворотке крови. В совокупности эти исследования ориентировались на создание методов диагностики различных болезней. Одновременно он занялся изучением проблемы «внутренних секреций», связанной с обменом веществ в организме и особенно актуальной для постановки и решения вопроса образования ферментов в процессе эмбрионального развития живого организма. Это направление работ в основном развивалось в институте уже после смерти Баха.

В 1926 г. Бах удостоен премии им. В. И. Ленина, а в 1929 г. избран в действительные члены Академии наук СССР.

При непосредственном содействии Баха биохимические исследования в нашей стране развивались достаточно энергично. Возникла настоятель­ная необходимость в создании еще одного научного центра, способного координировать всю деятельность в стране, в области биохимии. Таким центром стал организованный А. Н.- Бахом совместно с его учеником и сотрудником А. И. Опариным новый Институт биохимии АН СССР, открытие которого состоялось в начале 1935 г.

Бах награжден Государственной премией СССР (1941). В 1944 г. его имя было присвоено Институту биохимии АН СССР. В 1945 г. Бах удостоен звания Героя Социалистического Труда «за выдающиеся заслуги в области биохимии, в частности за разработку теории реакции медленного окисления и химии ферментов, а также за создание научной биохимической школы».

БУТЛЕРОВ Александр Михайлович (15.IX. 1828-17.VIII. 1886) родился в Чистополе Казанской губернии в семье мелкопоместного дворянина. Мать Бутлерова умерла через несколько дней после рождения единственного сына. Первоначально учился и воспитывался в частном пансионе при первой казанской гимназии. Затем в течение двух лет, с 1842 по 1844 г., был гимназистом, а в 1844 г. поступил в Казанский университет, который и закончил через пять лет.

Бутлеров рано, уже 16-летним юношей, увлекся химией. В университете его учителями по химии были К.К. Клаус, изучавший свойства металлов платиновой группы, и Н.Н. Зинин, ученик знаменитого немецкого химика Ю. Либиха, успевший к 1842 г. прославиться открытием реакции получения анилина путем восстановления нитробензола. Именно Зинин укрепил в Бутлерове интерес к химии. В 1847 г. Зинин переехал в Петербург, и Бутлеров в какой-то мере изменил химии, серьезно занявшись энтомологией, коллекционированием и изучением бабочек. В 1848 г. за работу «Дневные бабочки волго-уральской фауны» Бутлерову была присуждена степень кандидата естественных наук. Но на последних курсах университета Бутлеров вновь возвратился к химии, что произошло не без влияния Клауса, и по окончании университета был оставлен преподавателем химии. Самые первые работы ученого в области органической химии были преимущественно аналитического характера. Но начиная с 1857 г. он твердо становится на путь органического синтеза. Бутлеров открыл новый способ получения метиленйодида (1858), диацетата метилена, синтезировал уротропин (1861) и многие производные метилена. В 1861 г. он выдвинул теорию химического строения и стал вести исследования, направленные на развитие представлений о зависимости реакционной способности веществ от структурных особенностей их молекул.

В 1860 и 1865 гг. Бутлеров был ректором Казанского университета. В 1868 г. он переехал в Петербург, где занял кафедру органической химии в университете. В 1874 г. избран действительным членом Петербургской академии наук. В 1878-1882 гг. Бутлеров был председателем отделения химии Русского физико-химического общества. В то же время он был почетным членом многих научных обществ.

ВАНТ-ГОФФ Якоб (30.VIII.1852 -01.111.1911) - голландский химик, родился в Роттердаме в семье врача. Окончил среднюю школу в 1869 г. Чтобы получить профессию химика-технолога, переехал в Дельфт, где поступил в Политехническую школу. Хорошая начальная подготовка и усиленные домашние занятия позволили Якобу пройти трехгодичный курс обучения в Политехникуме за два года. В июне 1871 г. он получил диплом химикатехнолога, а уже в октябре поступил в Лейденский университет, чтобы совершенствовать свои математические познания.

После года обучения в Лейденском университете Вант-Гофф переезжает в Бонн, где занимается в Химическом институте университета у А. Кекуле до лета 1873 г. Осенью 1873 г. он направляется в Париж, в химическую лабораторию Ш. Вюрца. Там он знакомится с Ж. Ле Белем. Стажировка у Вюрца длилась год. В конце лета 1874 г. Вант-Гофф вернулся на родину. В Утрехтском университете в конце этого года защитил докторскую диссертацию о цианоуксусной и малоновой кислотах, опубликовал свою знаменитую работу «Предложение применять в пространстве...» В 1876 г. был избран доцентом Ветеринарной школы в Утрехте.

В 1877 г. Амстердамский университет пригласил Вант-Гоффа в качестве лектора. Через год он был избран профессором химии, минералогии и геологии. Там Вант-Гофф создал свою лабораторию. Научные исследования в основном касались кинетики реакций и химического сродства. Он сформулировал правило, носящее его имя: при повышении температуры на 10° скорость реакции увеличивается в два-три раза. Вывел одно из основных уравнений химической термодинамики - уравнение изохоры, выражающее зависимость константы равновесия от температуры и теплового эффекта реакции, а также уравнение химической изотермы, устанавливающее зависимость химического сродства от константы равновесии реакции при постоянной температуре. В 1804 г. Вант-Гофф опубликовал книгу «Очерки химической динамики», в которой изложил основные постулаты химической кинетики и термодинамики. В 1885-1886 гг. разработал осмотическую теорию растворов. В 1886-1889 гг. заложил основы количественной теории разбавленных растворов.

В 1888 г. Лондонское химическое общество избрало Вант-Гоффа своим почетным членом. Это было первое крупное международное признание его научных заслуг. В 1889 г. он был избран почетным членом Немецкого химического общества, в 1892 г. - Шведской академии наук, в 1895 г. - Петербургской академии наук, в 1896 г. - Берлинской академии наук и далее - членом многих других академий наук и научных обществ.

В 1901 г. Вант-Гоффу была присуждена первая Нобелевская премия по химии.

Женева была одним из центров революционной эмиграции. Из царской России сюдабежали А. И. Герцен, Н. П. Огарев, П. А. Кропоткин и др. В 1895 г. сюда впер

ВЁЛЕР Фридрих (31.VII.1800-23.IX.1882) родился в Эшерсхейме (близ Франкфурта-на-Майне, Германия) в семье шталмейстера и ветеринарного врача при дворе кронпринца Гессенского.

С детства интересовался химическими опытами. Во время обучения медицине в Марбургском университете (1820) обустроил в своей кварти­ре маленькую лабораторию, где проводил исследования родановой кислоты и цианистых соединений. Перейдя через год в Гейдельбергский университет, работал в лаборатории Л. Гмелина, где получил циановую кислоту. По совету Гмелина Вёлер решил окончательно оставить медицину и заняться только химией. Он обратился с просьбой к Й. Берцелиусу практиковаться в его лаборатории. Так осенью 1823 г. он стал первым и единственным пока практикантом у знаменитого шведского ученого.

Берцелиус поручил ему заняться анализом минералов, содержащих селен, литий, церий и вольфрам - малоизученные элементы, но Вёлер продолжал также свои исследования циановой кислоты. Действуя аммиаком на циан, он получил наряду со щавелевокислым аммонием кристаллическое вещество, оказавшееся впоследствии мочевиной. Возвратившись из Стокгольма, он несколько лет работал в Технической школе в Берлине, где организовал химическую лабораторию; к этому периоду и относится его открытие искусственного синтеза мочевины.

В то же время он получил важные результаты в области неорганической химии. Одновременно с Г. Эрстедом Вёлер изучал проблему получения из глинозема металлического алюминия. Хотя первым решил ее датский ученый, Вёлер предложил более удачный метод выделения металла. В 1827 г. ему впервые удалось получить металлические бериллий и иттрий. Он был близок к открытию ванадия, но здесь в силу случайных обстоятельств уступил пальму первенства шведскому химику Н. Сёфстрему. Кроме того, он первый приготовил фосфор из пережженных костей.

Несмотря на достигнутые успехи в области минеральной химии, Вёлер все же вошел в историю как первоклассный химик-органик. Здесь его достижения весьма впечатляющи. Так, в тесном содружестве с другим великим немецким химиком - Ю. Либихом он установил формулу бензойной кислоты (1832); обнаружил существование радикальной группы С 6 Н 5 СО - , получившей название бензоила и сыгравшей важную роль в становлении теории радикалов - одной из первых теорий строения органических соединений; получил диэтилтеллур (1840), гидрохинон (1844).

Впоследствии он не раз обращался к изысканиям в области неорганической химии. Изучал гидриды и хлориды кремния (1856-1858), приготовил карбид кальция и - исходя из него - ацетилен (1862). Вместе с французским ученым А. Сент-Клер Девилем получил (1857) чистые препараты бора, гидриды бора и титана, нитрид титана. В 1852 г. Вёлер ввелв химическую практику смешанный медно-хромовый катализатор CuO Cr 2 O 3 , нашедший применение для окисления сернистого газа. Все эти исследования он проводил в Гёттингенском университете, кафедра химии которого считалась одной из лучших в Европе (Вёлер стал ее профессором в 1835 г.).

Химическая лаборатория Гёттингенского университета в 1850-х гг. превратилась в новый химический институт. Вёлеру пришлось почти целиком отдаться преподавательской деятельности (в начале 1860-х гг. он с помощью двух ассистентов руководил занятиями 116 практикантов). На собственные исследования у него почти не оставалось времени.

Тяжелое впечатление произвела на него кончина Ю. Либиха в 1873 г. В последние годы своей жизни он целиком отошел от экспериментальной работы. Тем не менее в 1877 г. был избран президентом Немецкого химического общества. Вёлер состоял также членом и почетным членом многих иностранных академий наук и научных обществ, в том числе - Петербургской академии наук (с 1853 г.).

ГЕЙ-ЛЮССАК Жозеф (06.XII.1778-09.V. 1850) - французский естествоиспытатель. Окончил Политехническую школу в Париже (1800), в которой затем некоторое время работал ассистентом. Ученик А. Фуркруа, К. Бертолле, Л. Воклена. С 1809 г. - профессор химии в Политехнической школе и профессор физики в Сорбонне, профессор химии в Ботаническом саду (с 1832 г.).

Плодотворно работал во многих областях химии и физики. Совместно со своим соотечественником Л. Тенаром выделил свободный бор из борного ангидрида (1808). Детально изучил свойства йода, указал на его аналогию с хлором (1813). Установил состав синильной кислоты и получил циан (1815). Впервые построил график растворимости солей в воде от температуры (1819). Ввел новые методы объемного анализа в аналитическую химию (1824-1827). Разработал метод получения щавелевой кислоты из древесных опилок (1829). Сделал ряд ценных предложений в области химической технологии и в экспериментальной практике.

Член Парижской академии наук (1806), ее президент (1822 и 1834). Иностранный почетный член Петербургской академии наук (1829).

ГЕСС Герман Иванович (Герман Иоганн) (07.VIII. 1802-12.XII. 1850) родился в Женеве в семье художника. В 1805 г. семья Гессов переехала в Москву, так что вся последующая жизнь Германа связана с Россией.

В 1825 г. он закончил Дерптский университет и защитил диссертацию на степень доктора медицины.

В декабре того же года «как особо одаренный и талантливый молодой ученый» был направлен в заграничную командировку и некоторое время проработал в Стокгольмской лаборатории И. Берцелиуса; с ним он впоследствии поддерживал деловую и дружескую переписку. По возвращении в Россию три года работал в Иркутске врачом и одновременно проводил химические и минералогические исследования. Они оказались настолько впечатляющими, что 29 октября 1828 г. конференция Петербургской академии наук избрала Гесса адъюнктом по химии и предоставила ему возможность продолжить научные работы в Петербурге. В 1834 г. он был избран ординарным академиком. В это время Гесс уже всецело был поглощен термохимическими исследованиями.

Гесс внес большой вклад в разработку русской химической номенк­латуры. Справедливо полагая, что «в России чувствуется сейчас более, чем когда-либо необходимость изучать химию...», а «до сих пор не имелось ни одного хотя бы самого посредственного труда на русском языке, посвященного отрасли точных наук», Гесс решил сам написать такой учебник. В 1831 г. вышло в свет 1-е издание «Оснований чистой химии» (учебник выдержал семь изданий, последнее - в 1849 г.). Он стал лучшим отечественным учебником по химии первой половины XIX в.; по нему училось целое поколение русских химиков, в том числе Д. И. Менделеев.

B 7-м издании «Оснований» Гесс впервые в России предпринял попытку систематизации химических элементов, объединив все известные неметаллы в пять групп и полагая, что в дальнейшем подобная классификация может быть распространена и на металлы.

Гесс скончался в расцвете творческих сил, в возрасте 48 лет. В посвя­щенном ему некрологе содержались такие слова: «Гесс имел характер прямой и благородный, душу, открытую для возвышеннейших человеческих наклонностей. Будучи слишком восприимчив и скор в своих суждениях, Гесс легко предавался всему, что казалось ему добрым и благородным, с увлечением столь же пылким, как ненависть, с которою он преследовал порок и которая была чистосердечна и непреклонна. Мы имели случай не раз удивляться гибкости, своеобразности и глубине его ума, разносторонности его познаний, правдивости его возражений и искусству, скоторым он умел по воле своей направлять и услаждать беседу». Проникновенно писались некрологи в те далекие времена!

ЖЕРАР Шарль (21.VIII.1816-19.VIII.1856) родился в Страсбурге (Франция) в семье владельца небольшого химического предприятия. В 1831-1834 гг. учился в Высшей технической школе в Карлсруэ и затем в Высшей коммерческой школе в Лейпциге, куда его направил отец для получения химико-технологического и экономического образования, необходимого для управления семейной фирмой. Но, заинтересовавшись химией, Жерар решил работать не в промышленности, а в науке и продолжил образование сначала в Гисенском университете у Ю. Либиха, а затем в Сорбонне у Ж. Дюма. В 1841-1848гг. он был профессором университета в Монпелье, в 1848-1855 г. жил в Париже и работал в собственной лаборатории, а в последние годы жизни, в 1855-1856 гг., был профессором Страсбургского университета.

Шарль Жерар - один из самых выдающихся химиков XIX столетия. В истории химии он оставил неизгладимый след как самоотверженный борец против консерватизма в науке и как ученый, смело прокладывавший новые пути развития атомно-молекулярного учения в то время, когда в химии еще не было четких разграничений между понятиями атома, молекулы и эквивалента, а также не было ясных представлений о химических формулах воды, аммиака, кислот, солей.

В России раньше, чем в других странах, учение Жерара о единой классификации химических соединений и его идеи о строении молекул были восприняты в качестве основополагающих начал общей и особенно органической химии. Выдвинутые им положения были развиты в работах Д. И. Менделеева, связанных с упорядочением взглядов на химические элементы, и А. М. Бутлерова, который исходил из них при создании теории химического строения.

Плодотворная научная деятельность Жерара началась во второй поло­вине 1830-х гг., когда ему удалось установить правильные формулы многих силикатов. В 1842 г. он впервые описал предложенный им метод определения молекулярной массы химических соединений, используемый и поныне. В том же году он ввел новую систему эквивалентов: Н = 1, О = 16, С = 12, CI = 35,5 и т. д., т. е. систему, ставшую одной из основ атомно-молекулярного учения. Первоначально эти работы Жерара были встречены тогдашними маститыми химиками в штыки. «Даже Лавуазье не отважился бы на такие нововведения в химию», - заявляли ученые, в том числе и такие видные, как Л. Тенар.

Преодолевая барьеры неприятия новых идей, Жерар тем не менее продолжал решать самые кардинальные вопросы химии. В 1843 г. он впервые установил правильные, вошедшие в арсенал химических знаний и используемые до сих пор значения молекулярных масс и формулы воды, оксидов металлов, азотной, серной и уксусной кислот.

В 1844-1845 гг. он опубликовал двухтомный труд «Очерки органической химии», в котором предложил новую, по существу современную классификацию органических соединений; впервые указал на гомологию как общую закономерность, связывающую все органические соединения в ряды, установив при этом гомологическую разницу - СН 2 и показав роль «химических функций» в структуре молекул органических веществ.

Важнейший результат работ Жерара, выполненных в 1847-1848 гг., - создание так называемой унитарной теории, в которой вопреки дуалистической теории Й. Берцелиуса и мнению химиков середины прошлого столетия было доказано: органические радикалы не существуют самостоятельно, а молекула представляет собой не суммативное множество атомов и радикалов, а единую, целостную, поистине унитарную систему.

Жерар показал, что атомы в этой системе не просто влияют, но преобразуют друг друга. Так, например, атом водорода в карбоксильной группе - СООН обладает одними свойствами, в спиртовой гидроксильной группе - другими, а в углеводородных остатках СН-, СН 2 - и СН 3 - совсем иными свойствами. Унитарная теория легла в основание общенаучной теории систем. Она стала одним из отправных пунктов теории химического строения А. М. Бутлерова.

В 1851 г. Жерар развил теорию типов, согласно которой все химические соединения можно классифицировать как производные трех типов - водорода, воды и аммиака. Развитие именно этой теории А. Кекуле привело к представлениям о валентности. Руководствуясь своими теориями, Жерар синтезировал сотни новых органических и десятки неорганических соединений.

Зинин Николай Николаевич (25.VIII. 1812-18.11.1880) родился в Шуше (Нагорный Карабах). В раннем детстве лишился родителей и воспитывался в семье дяди в Саратове. После учебы в гимназии поступил в Казанский университет на математическое отделение философского факультета, который окончил в 1833 г.

Во время учебы его интересы были далеки от химии. Он проявил выдающиеся способности к математическим наукам. За дипломное сочинение «О пертурбациях эллиптического движения планет» удостоился золотой медали. В 1833 г. Зинина оставили в университете для подготовки к профессорскому званию по математическим наукам. Возможно, творческая судьба Зинина сложилась бы совсем по-иному, и мы имели бы в его лице первоклассного математика, если бы совет университета не поручил ему преподавать химию (в то время обучение этой науке велось весьма неудовлетворительно). Так Зинин стал химиком, тем более что всегда проявлял к ней интерес. По этой области науки он защитил в 1836 г. магистерскую диссертацию «О явлениях химического сродства и о превосходстве теории Берцелиуса перед химической статикой Бертоллета». В 1837-1840 гг. Зинин был в заграничной командировке, главным образом в Германии. Здесь ему выпало счастье два года проработать в лаборатории Ю. Либиха в Гисенском университете. Знаменитый немецкий ученый оказал решающее влияние на направление дальнейшей научной деятельности Зинина.

Возвратившись в Россию, он защищает докторскую диссертацию при Петербургском университете на тему «О соединениях бензоила и об открытых новых телах, относящихся к бензоиловому ряду». Он разработал метод получения производного бензоила, заключавшийся в действии спиртового или водного раствора цианистого калия на горько-миндальное масло (бензойный альдегид).

Любопытно, что исследования Зинина производных бензоила, продол­жавшиеся несколько лет, до известной степени были вынужденными. Дело в том, что по просьбе Академии наук таможня передавала в ее химическую лабораторию все конфискованное горько-миндальное масло. Впоследствии по этому поводу А. М. Бутлеров писал: «Быть может, приходится даже пожалеть об этом обстоятельстве, установившем слишком определенно направление работ Зинина, которого талант, несомненно, принес бы крупные плоды и в других областях химии, если бы он посвятил им свое время».Но подобная «ситуация» относится уже к периоду окончательного возвращения Зинина в Петербург в 1848 г. В течение, же семи лет (1841-1848) он работал в Казани, решающим образом способствуя созданию казанской школы - первой русской химической школы. Помимо получения анилина, он сделал здесь немало важных открытий в органической химии: получил, в частности, бензидин и открыл так называемую бензидиновую перегруппировку (перегруппировка гидразобензола под действием кислот). Она вошла в историю как «перегруппировка Зинина».

Петербургский период его деятельности также оказался плодотворным: открытие урейдов (1854), получение дихлор- и тетрахлорбензола, топана и стильбена (1860-е гг.).

В 1865 г. Зинин бы избран ординарным академиком Петербургской Академии наук по технологии и химии. В 1868 г. стал одним из организаторов Русского химического общества и в период 1868-1877 гг. состоял первым его президентом. «Имя Зинина будут всегда. Чтить те, которым дороги и близки к сердцу спехи и величие науки в России», - сказал после его кончины Бутлеров.

КЮРИ Пьер (15.V.1859-19. IV.1906). Этот талантливый французский физик в начале своей карьеры совершенно не знал, что ждет его впереди. Он окончил Парижский университет (1877). В 1878-1883 гг. работал там ассистентом, а в 1883-1904 гг. - в Парижской школе промышленной физики и химии. В 1895 г. стал мужем М. Склодовской. С 1904 г. - профессор Сорбонны. Трагически погиб под колесами ом­нибуса в результате несчастного случая.

Еще до своих исследований радиоактивности П. Кюри осуществил ряд важных исследований, которые сделали его известным. В 1880 г. он вместе с братом Ж. Кюри открыл пьезоэлектрический эффект. В 1884- 1885 гг. развивал теорию симметрии образования кристаллов, сформулировал общий принцип их роста и ввел понятие поверхностной энергии граней кристалла. В 1894 г. сформулировал правило, согласно которому появлялась возможность определять симметрию кристалла, находящегося под внешним воздействием (принцип Кюри).

При изучении магнитных свойств тел установил независимость магнитной восприимчивости диамагнетиков от температуры и обратную пропорциональность зависимости от температуры для парамагнетиков (закон Кюри). Также открыл для железа существование температуры, выше

которой у него исчезают ферромагнитные свойства (закон Кюри). Если бы даже П. Кюри не обратился к исследованию радиоактивных явлений, он остался бы в истории как один из видных ученых-физиков XIX в.

Но ученый чувствовал требования времени и вместе со своей супругой занялся исследованием явления радиоактивности. Помимо участия в открытии полония и радия он первым установил (1901) биологическое действие радиоактивного излучения. Одним из первых ввел понятие периода полураспада, показав его независимость от внешних условий. Предложил радиоактивный метод определения возраста горных пород. Вместе с А. Лабордом обнаружил самопроизвольное выделение тепла солями радия, рассчитав энергетический баланс этого процесса (1903). Продолжительные химические операции по выделению полония и радия в основном осуществляла М. Кюри. Роль П. Кюри здесь сводилась к необходимым физическим измерениям (измерениям активности отдельных фракций). Вместе с А. Беккерелем и М. Кюри в 1903 г. был удостоен Нобелевской премии по физике.

ЛАВУАЗЬЕ Антуан (26.VIII.1743-08.V. 1794). Родился в Париже, в семье прокурора. В отличие от других выдающихся химиков - своих современников - получил превосходное и разностороннее образование. Сначала обучался в аристократическом Коллеже Мазарини, где изучал математику, физику, химию и древние языки. В 1764 г. окончил юридический факультет Сорбонны со званием адвоката; там он одновременно совершенствовал знания в области естественных наук. В 1761 - 1764 гг. прослушал курс лекций по химии, который читал крупный химик Гийом Руэль. Юриспруденция его не привлекала, и в 1775 г. Лавуазье становится директором Управления порохов и селитр. Эту государственную должность он занимал до 1791 г. На свои средства он создал в Париже собственную химическую лабораторию. Первые годы его научной деятельности были отмечены заметными успехами, и уже в 1768 г. его избирают действительным членом Парижской академии наук по классу химии.

Хотя Лавуазье по праву считается одним из величайших химиков всех времен, он был и видным физиком. В автобиографической заметке, написанной незадолго до трагической гибели, Лавуазье писал, что «главным образом посвятил свою жизнь трудам, относящимся к физике и химии». По выражению одного из его биографов, он атаковал химические проблемы с позиций физики. В частности, он начал систематические исследования в области термометрии. В 1782-1783 гг. вместе с Пьером Лапласом изобрел ледяной калориметр и измерил термические константы многих соединений, теплотворную способность разных топлив.

Лавуазье первым начал систематические физико-химические иссле-дования биологических процессов. Он установил подобие процессов дыхания и горения и показал, что сущность дыхания заключается в превращении вдыхаемого кислорода в углекислый газ. Разрабатывая систематику органических соединений, Лавуазье заложил основы органического анализа. Это немало способствовало возник-новению органической химии как самостоятельной области химических исследований. Знаменитый ученый стал одной из многочисленных жертв французской революции. Выдающийся творец науки, он в то же время был замет-ным общественно-политическим деятелем, убежденным сторонником конституционной монархии. Еще в 1768 г. он вступил в Генеральный откуп компанию финансистов, получившую от правительства Франции права монопольной торговли различными продуктами и взимания пошлин. Естественно, ему приходилось соблюдать «правила игры», которые далеко не всегда находились в ладах с законом. В 1794 г. Максимильен Робеспьер выдвинул против него и других откупщиков тяжелые обвине-ния. Хотя ученый и полностью отвергал их, это ему не помогло. 8 мая

«Антуан Лоран Лавуазье, бывший дворянин, член бывшей Академии наук, заместитель депутата Учредительного собрания, бывший генеральный откупщик...» вместе с двадцатью семью другими откупщиками был обвинен в «заговоре против французского народа».

Вечером того же дня нож гильотины оборвал жизнь Лавуазье.

МЕНДЕЛЕЕВ Дмитрий Иванович (08.11.1834-02.11.1907) родился в То­больске, семнадцатый ребенок в семье директора гимназии. Огромную роль в его воспитании сыграла мать, Марья Дмитриевна. В 1850 г. поступил в Главный Педагогический институт в Петербурге, который окончил в 1855 г. В 1859 - феврале 1861 г. был в заграничной командировке, работал в собственной лаборатории в Гейдельберге, где совершил свое первое значительное научное открытие - температуры абсолютного кипении жидкостей. Преподавал в ряде учебных заведений в Петербурге, главным образом в университете (1857-1890). С 1892 г. и до конца жизни - управляющий Главной палаты мер и весов.

В историю мировой науки Менделеев вошел как ученый-энциклопедист. Его творческая деятельность отличалась необычайной широтой и глубиной. Сам он однажды сказал о себе: «Удивляюсь, чего я только не делывал на своей научной жизни».

Наиболее полную характеристику Менделееву дал крупный русский химик Л. А. Чугаев: «Гениальный химик, первоклассный физик, плодотворный исследователь в области гидродинамики, метеорологии, геологии, в различных отделах химической технологии (взрывчатые вещества, нефть, учение о топливе и др.) и других сопредельных с химией и физикой дисциплинах, глубокий знаток химической промышленности и промышленности вообще, особенно русской, оригинальный мыслитель в области учения о народном хозяйстве, государственный ум, которому, к сожалению, не суждено было стать государственным человеком, но который видел и понимал задачи и будущность России лучше представителей нашей официальной власти». Чугаев добавляет: «Он умел быть философом в химии, в физике и в других отраслях естествознания, которых ему приходилось касаться, и естествоиспытателем в проблемах философии, политической экономии и социологии».

В истории науки Менделееву отдают должное как творцу учения о периодичности: оно в первую очередь составило его истинную славу как химика. Но этим далеко не исчерпываются заслуги ученого в химии. Он предложил также важнейшее понятие о пределе органических соединений, осуществил цикл работ по изучению растворов, разработав гидратную теорию растворов. Учебник Менделеева «Основы химии», выдержавший при его жизни восемь изданий, был подлинной энциклопедией химических знаний конца XIX - начала XX в.

Между тем только 15% публикаций ученого относятся собственно к химии. Чугаев справедливо называл его первоклассным физиком; здесь он зарекомендовал себя как великолепный экспериментатор, стремившийся к высокой точности измерений. Кроме открытия «абсолютной температуры кипения» Менделеев, изучая газы в разреженном состоянии, нашел отступления от закона Бойля-Мариотта и предложил новое общее уравнение состояния идеального газа (уравнение Менделеева-Клапейрона). Разработал новую метрическую систему измерения температуры.

Возглавляя Главную палату мер и весов, Менделеев осуществлял обширную программу развития метрического дела в России, однако не ограничивался лишь проведением исследований прикладного характера. Он намеревался провести цикл работ по изучению природы массы и причин всемирного тяготения.

Среди ученых-естествоиспытателей - современников Менделеева - не было никого, кто столь активно интересовался бы вопросами промышленности, сельского хозяйства, политической экономии и государственного устройства. Этим проблемам Менделеев посвятил множество работ. Многие высказанные им мысли и идеи не устарели и в наше время; напротив, они приобретают новое звучание, ибо они, в частности, отстаивают самобытность путей развития России.

Менделеев был знаком и поддерживал дружеские отношения со многими выдающимися химиками и физиками Европы и Америки, пользуясь среди них большим авторитетом. Он был избран членом и почетным членом более 90 академий наук, научных обществ, университетов и институтов разных стран мира.

Его жизни и творчеству посвящены сотни публикаций - монографий, статей, воспоминаний, сборников. Но до сих пор не написана еще фундаментальная биография ученого. Не потому, что исследователи не предпринимали таких попыток. Потому, что эта задача беспримерно трудна.

Материалы взяты из книги «Я иду на урок химии.: Летопись важнеших открытий в химии XVII-XIX в.в.: Кн. для учителя. – М.: Первое сентября, 1999».

До XIX века понятия «биология» не существовало, а тех, кто занимался изучением природы, называли естествознателями, натуралистами. Сейчас этих ученых именуют родоначальниками биологических наук. Вспомним, кто были отечественные ученые-биологи (и их открытия кратко опишем), повлиявшие на развитие биологии как науки и положившие начало новым её направлениям.

Вавилов Н.И. (1887-1943)

Наши ученые-биологи и их открытия известны всему миру. Среди самых знаменитых - Николай Иванович Вавилов, советский ботаник, географ, селекционер, генетик. Родился в купеческой семье, получил образование в сельскохозяйственном институте. В течение двадцати лет руководил научными экспедициями, изучающими растительный мир. Он объездил практически весь земной шар, за исключением Австралии и Антарктиды. Собрал уникальную коллекцию семян различных растений.

В ходе своих экспедиций ученый выявил очаги зарождения культурных растений. Он предположил, что существуют некие центры их происхождения. Внес огромный вклад в изучение иммунитета растений и выявил что позволило установить закономерности в эволюции растительного мира. В 1940 году ботаник был арестован по сфабрикованному обвинению в растрате. Умер в тюрьме, посмертно реабилитирован.

Ковалевский А.О. (1840-1901)

В ряду первооткрывателей достойное место занимают отечественные ученые-биологи. И их открытия повлияли на развитие мировой науки. Среди всемирно известных исследователей беспозвоночных - Александр Онуфриевич Ковалевский, эмбриолог и биолог. Получил образование в Санкт-Петербургском университете. Изучал морских животных, предпринимал экспедиции на Красное, Каспийское, Средиземноморское и Адриатическое моря. Создал Севастопольскую морскую биостанцию и долгое время был её директором. Внес огромный вклад в аквариумистику.

Александр Онуфриевич изучал эмбриологию и физиологию беспозвоночных. Он был сторонником дарвинизма и изучал механизмы эволюции. Проводил исследования в области физиологии, анатомии и гистологии беспозвоночных. Стал одним из создателей эволюционной эмбриологии и гистологии.

Мечников И.И. (1845-1916)

Наши ученые биологи и их открытия были по достоинству оценены в мире. Илья Ильич Мечников 1908 году стал лауреатом Нобелевской премии в области физиологии и медицины. Мечников родился в семье офицера, образование получил в Харьковском университете. Открыл внутриклеточное пищеварение, клеточный иммунитет, доказал с помощью методов эмбриологии общее происхождение позвоночных и беспозвоночных.

Работал над вопросами эволюционной и сравнительной эмбриологии и вместе с Ковалевским стал родоначальником этого научного направления. Труды Мечникова имели большое значение в борьбе с инфекционными заболеваниями, тифом, туберкулезом, холерой. Ученого занимали процессы старения. Он полагал, что преждевременную смерть вызывает отравление микробными ядами и пропагандировал гигиенические способы борьбы, большую роль отводил восстановлению микрофлоры кишечника с помощью кисломолочных продуктов. Ученый создал русскую школу иммунологии, микробиологии, патологии.

Павлов И.П. (1849-1936)

Какой вклад в изучение высшей нервной деятельности внесли отечественные ученые биологи и их открытия? Первым русским нобелевским лауреатом в области медицины стал Павлов Иван Петрович за работу о физиологии пищеварения. Великий русский биолог и физиолог стал создателем науки о высшей нервной деятельности. Он ввел понятие о безусловных и условных рефлексах.

Ученый происходил из семьи священнослужителей и сам окончил рязанскую духовную семинарию. Но на последнем курсе прочел книгу И. М. Сеченова о рефлексах головного мозга и увлекся биологией и медициной. Он изучал физиологию животных в Петербургском университете. Павлов с помощью хирургических методов 10 лет подробно изучал физиологию пищеварения и за эти исследования получил Нобелевскую премию. Следующей областью интересов стала высшая нервная деятельность, изучению которой он посвятил 35 лет. Он ввел основные понятия науки о поведении - условный и безусловный рефлексы, подкрепление.

Кольцов Н.К. (1872-1940)

Продолжаем тему «Отечественные ученые-биологи и их открытия». Николай Константинович Кольцов - биолог, основатель школы экспериментальной биологии. Родился в семье бухгалтера. Окончил Московский университет, где изучал сравнительную анатомию и эмбриологию, собирал научный материал в европейских лабораториях. Организовал лабораторию экспериментальной биологии при Народном университете имени Шанявского.

Изучал биофизику клетки, факторы, определяющие её форму. Эти работы вошли в науку под названием «принцип Кольцова». Кольцов - один из в России, организатор первых лабораторий и кафедры экспериментальной биологии. Ученый основал три биостанции. Стал первым русским ученым, который использовал физико-химический метод в биологических исследованиях.

Тимирязев К.А. (1843-1920)

Отечественные ученые биологи и их открытия в области физиологии растений внесли вклад в развитие научных основ агрономии. Тимирязев Климент Аркадьевич был естествоиспытателем, исследователем фотосинтеза и пропагандистом идей Дарвина. Ученый происходил из дворянского рода, окончил Петербургский университет.

Тимирязев изучал вопросы питания растений, фотосинтез, засухоустойчивость. Ученый занимался не только чистой наукой, но и придавал большое значение практическому применению исследований. Он заведовал опытным полем, где испытывал различные удобрения и фиксировал их воздействие на урожай. Благодаря этим исследованием сельское хозяйство значительно продвинулось по пути интенсификации.

Мичурин И.В. (1855-1935)

Ученые-биологи России и их открытия значительно повлияли на сельское хозяйство и садоводство. Иван Владимирович Мичурин - и селекционер. Его предки были мелкопоместными дворянами, от них ученый перенял интерес к садоводству. Ещё в раннем детстве он ухаживал за садом, многие деревья в котором были привиты его отцом, дедом и прадедом. Селекционную работу Мичурин начал в арендованном запущенном поместье. За период своей деятельности вывел более 300 сортов культурных растений, в том числе и адаптированных к условиям центральной полосы России.

Тихомиров А.А. (1850-1931)

Русские ученые биологи и их открытия помогали развивать новые направления в сельском хозяйстве. Александр Андреевич Тихомиров - биолог, доктор зоологии и ректор Московского университета. В Санкт-Петербургском университете получил юридическое образование, но заинтересовался биологией и получил второе высшее в Московском университете на отделении естественных наук. Ученый открыл такое явление, как искусственный партеногенез, один из важнейших разделов в индивидуальном развитии. Внес большой вклад в развитие шелководства.

Сеченов И.М. (1829-1905)

Тема «Известные ученые биологи и их открытия» будет неполной без упоминания Ивана Михайловича Сеченова. Это знаменитый русский биолог-эволюционист, физиолог и просветитель. Родился в семье помещика, образование получил в Главном инженерном училище и Московском университете.

Ученый исследовал головной мозг и обнаружил центр, вызывающий торможение центральной нервной системы, доказал влияние мозга на мышечную деятельность. Написал классический труд «Рефлексы головного мозга», где сформулировал мысль, что акты сознательные и бессознательные совершаются в виде рефлексов. Представил мозг как компьютер, который управляет всеми процессами жизнедеятельности. Обосновал дыхательную функцию крови. Ученый создал отечественную школу физиологии.

Ивановский Д.И. (1864-1920)

Конец XIX - начало XX века - время, когда творили великие русские ученые-биологи. И их открытия (таблица любого объема не смогла бы вместить их перечень) способствовали развитию медицины и биологии. В их числе и Дмитрий Иосифович Ивановский - физиолог, микробиолог и родоначальник вирусологии. Получил образование в Петербургском университете. Ещё во время учебы проявил интерес к заболеваниям растений.

Ученый предположил, что заболевания вызываются мельчайшими бактериями или токсинами. Сами вирусы увидели с помощью электронного микроскопа только через 50 лет. Именно Ивановского считают родоначальником вирусологии как науки. Ученый изучал процесс спиртового брожения и влияние на него хлорофилла и кислорода, почвенную микробиологию.

Четвериков С.С. (1880-1959)

Русские ученые-биологи и их открытия внесли большой вклад в развитие генетики. Четвериков Сергей Сергеевич родился ученый в семье фабриканта, образование получил в Московском университете. Это выдающийся генетик-эволюционист, организовавший изучение наследственности в популяциях животных. Благодаря этим исследованиям ученый считается основоположником эволюционной генетики. Он положил начало новой дисциплине - генетике популяций.

Вы ознакомились со статьей «Известные отечественные ученые биологи и их открытия». Таблица их достижений может быть составлена на основе предложенного материала.

Практически закончились темы в . Готовьтесь завтра встречать новый стол, придумывайте темы. А сегодня слушаем френда luciferushka и его тему: »Интересна биография и научные достижения физика Ландау и насколько правдивы мифы вокруг этого уникума?)))»

Давайте узнаем побольше об этой неординарной фигуре в истории российской науки.

В декабре 1929 года секретарь директора Института теоретической физики в Копенгагене сделал в книге регистрации иностранных гостей короткую запись: «Доктор Ландау из Ленинграда». Доктору в то время не исполнилось еще и 22 лет, но кто удивился бы этому в знаменитом институте, ровно как и мальчишеской худобе, безапеляционности суждений? Копенгаген слыл тогда мировой столицей квантовой физики. И если продолжить метафору, бессменным мэром ее был сам великий Нильс Бор. К нему и приехал Лев Ландау.

Стала расхожей шутка, что квантовая революция в естествознании ХХ столетия происходила в детских садах Англии, Германии, Дании, России, Швейцарии… Эйнштейну было 26 лет, когда наряду с теорией относительности он разработал квантовую теорию света, Нильсу Бору — 28, когда он построил квантовую модель атома, Вернеру Гейзенбергу — 24 в пору создания им варианта квантовой механики… Поэтому никого не поразил юный возраст доктора из Ленинграда. Между тем Ландау знали уже как автора доброго десятка самостоятельных работ по квантовым проблемам. Первую из них он написал в 18 лет — когда учился в Ленинградском университете на физико-математическом факультете.

Этот этап в развитии науки о микромире назвали «эпохой бури и натиска». На рубеже ХIХ-ХХ веков шла борьба против классических прдставлений в естествознании. Лев Ландау был из тех, кто просто создан для научных бурь и натиска.

Лев Давидович Ландау родился 22 января 1908 года в Баку в семье инженера-нефтяника. Математические способности у него проявились очень рано: в 12 лет он научился дифференцировать, в 13- интегрировать, а в 1922 году поступил в университет, где учился одновременно на двух факультетах — физико-математическом и химическом. Потом Ландау перевелся в Ленинградский университет; закончив его, в 1927 году поступил в аспирантуру Ленинградского физико-технического института. В октябре 1929 года по решению Народного комиссариата просвещения Ландау направили на стажировку за границу. Он посетил Германию, Данию, Англию.

Во время полугодовой стажировки молодой физик провел у Нильса Бора в общей сложности 110 дней. То, как проходили эти дни, запечатлел на карикатурном рисунке другой российский ученый — 26-летний Георгий Гамов, тогда уже прославившийся благодаря теории альфа-распада ядер. Ландау изображен привязанным к стулу с кляпом во рту, а Нильс Бор стоит над ним с указующим перстом и наставительно произносит: «Погодите, погодите, Ландау, дайте мне хоть слово сказать!». «Такая вот дискуссия идет все время», — пояснял свою карикатуру Гамов, добавляя, что на самом деле никому слова сказать не давал именно почтеннейший Нильс Бор.

И все-таки истинной правдой были азартная неуступчивость молодых и долготерпение учителя. Супруга Бора Маргарет рассказывала: «Нильс оценил и полюбил Ландау с первого дня. И понял его нрав… Вы знаете, он бывал невыносим, не давал говорить Нильсу, высмеивал старших, походил на взлохмоченного мальчишку… Это про таких говорится: несносный ребенок… Но как он был талантлив и как правдив! Я его тоже полюбила и знала, как он любит Нильса…»

Ландау любил в шутку повторять, что опоздал родиться на несколько лет. В 20-х годах ХХ века новая физика развивалась настолько стремительно, словно и вправду родившиеся чуть раньше его успели покорить все «восьмитысячники в горной гряде квантовых Гималаев». Он со смехом говорил своему приятелю Юрию Румеру, тоже стажировавшемуся в Европе:»Как все красивые девушки уже разобраны, так все хорошие задачи уже решены».

К тому времени были в основном завершены два равнозначных варианта квантовой механики — Гейзенберга и Шредингера, открыты и сформулированы три ключевых принципа новой науки: принципы дополнительности, запрета и соотношение неопределенностей. Однако вся последующая творческая жизнь Льва Ландау продемонстрировала, как много непознанного оставили на его долю микро- и макромир.
Школа Ландау зародилась в середине 30-х годов, ее основатель далеко не всегда оказывался старше своих учеников. Оттого в этой школе с очень строгой дисциплиной все ученики были на «ты» между собой, а многие — и с учителем. Среди них — его ближайший сподвижник, будущий академик Евгений Михайлович Лифшиц. Он стал соавтором Ландау по знаменитому «Курсу теоретической физики».

Для ученых всего мира этот курс том за томом превращался в своеобразное священное писание, как серьезно выразился однажды талантливейший Владимир Наумович Грибов. Неповторимым достоинством курса была его энциклопедичность. Самостоятельно изучая последовательно выходившие в свет тома, и молодые, и почтенные теоретики начинали ощущать себя знатоками современной физической картины микро- и макромира. «После Энрико Ферми я последний универсалист в физике», — не раз говорил Ландау, и это признавалось всеми.

Школа Ландау была, наверное, самым демократичным сообществом в российской науке 30-60-х годов, вступить в которое мог кто угодно — от доктора наук до школьника, от профессора до лаборанта. Единственное, что требовалось от претендента, — успешно сдать самому учителю (или его доверенному сотруднику) так называемый теорминимум Ландау. Но все знали, что это «единственное» — суровое испытание способностей, воли, трудолюбия и преданности науке. Теорминимум состоял из девяти экзаменов — двух по математике и семи по физике. Он охватывал все, что необходимо знать, прежде чем начинать самостоятельно работать в теоретической физике; сдавали теорминимум не более трех раз. Четвертую попытку Ландау никому не разрешал. Здесь он был строг и неумолим. Мог сказать порвалившемуся абитуриенту: «Физика из вас не получится. Надо называть вещи своими именами. Было бы хуже, если бы я ввел вас в заблуждение.»
Евгений Лифшиц рассказывал, что начиная с 1934 года Ландау сам ввел поименный список выдержавших испытание. И к январю 1962 года этот «гроссмейстерский» список включал всего 43 фамилии, но зато 10 из них принадлежали академикам и 26 — докторам наук.

Теорминимум — теоркурс — теорсеминар… Во всем мире были известны три ипостаси педагогической деятельности Ландау, благодаря которым он стал для многих Учителем с большой буквы, несмотря на бескомпромиссность, резкость, прямоту и другие «антипедагогические» черты его непростого характера.

Школа Ландау отличалась суровостью даже во внешних проявлениях. Нельзя было опоздать к началу теорсеминара в 11 часов утра, какие бы сверхважные события ни мешали назначенному на этот четверг докладчику вовремя добраться до института на Воробьевых горах. Если кто-нибудь в 10 часов 59 минут произносил: «Дау пора начинать!», Ландау отвечал: «Нет, у Мигдала есть еще минута, чтобы не опоздать…». И в распахнутую дверь действительно вбегал стремительный Аркадий Бейнусович Мигдал (1911-1991). Эта последняя минута получила название «мигдальской». «А ты никогда не станешь королем! — внушал Лев Давидович многообещающему докору наук, который был не в ладах с часами. — Точность — вежливость королей, а ты не вежлив». Мигдал так и не стал королем, но стал академиком. На семинарах Ландау беспощадно отрицал пустое теоретизирование, именуя его патологией. И мгновенно загорался, услышав плодотворную идею.

В 1958 году физики, торжественно отмечая 50-летие Ландау, не могли устроить выставку его экспериментальных установок или созданных им приборов в Институте физических проблем. Зато академики и студенты, придумаои и заранее заказали искусникам из мастерских Курчатовского Института атомной энергии мраморные скрижали — «Десять заповедей Ландау». В подражание десяти библейским заповедям на двух мраморных досках были выгравированы десять основных физических формул Ландау, о которых его ученик, академик Юрий Моисеевич Каган (родился в 1928 году), сказал: «Это было самое расхожее из самого важного, что Дау открыл».

А через четыре года после юбилея жизнь Ландау повисла на волоске…

Была скверная погода. Сильнейший гололед. Девочка перебегала дорогу. Резко затормозившую лекговую машину круто занесло. Удар встречного грузовика пришелся сбоку. И всю его силу испытал сидевший у двери пассажир. Машина «скорой помощи» доставила Ландау в больницу. Знаменитый чешский нейрохирург Зденек Кунц, срочно прилетевший в Москву, вынес приговор: «Жизнь больного несовместима с полученными травмами».

А он выжил!

Это чудо сотворили вместе с врачами физики. Светила медицины, такие, как канадский нейрохирург Пенфилд, и светила физики, среди них сам Нильс Бор, объединили усилия, спасая Ландау. По их просьбам в Москву летели лекарства из Америки, Англии, Бельгии, Канады, Франции, Чехословакии. Летчики международных авиалиний включились в эстафету передачи в Россию срочно необходимых препаратов.

Академики Николай Николаевич Семенов и Владимир Александрович Энгельгардт уже в то самое злосчастное воскресенье, 7 января, синтезировали вещество против отека мозга. И хотя их опередили — из Англии доставили готовое лекарство, для чего на целый час задержали отправление рейса в Россию, — но каков был деятельный прорыв двух 70- летних коллег пострадавшего!

В тот весенний день, когда у всех появилось ощущение выйгранной борьбы со смертью, Петр Леонидович Капица сказал: «…это благородный фильм, который нужно было бы назвать «Если бы парни всего мира!..»— и сразу же поправил себя, уточнив:— Лучше бы «Ученые парни всего мира!». И предложил дать такое название первому газетному очерку о состоявшемся чуде воскрешения Ландау.
Нильс Бор сразу решил психологически поддержать Ландау. В Шведскую королевскую академию наук ушло из Копенгагена подписанное 77-летним Бором письмо с предложением «…Нобелевская премия в области физики за 1962 год должна быть присуждена Льву Давидовичу Ландау за то поистине решающее влияние, которое его оригинальные идеи и выдающиеся раьоты оказали на атомную физику нашего времени».
Премию, вопреки традиции, шведы вручили Ландау не в Стокгольме, а в Москве, в больнице Академии наук. И он не мог ни подготовить, ни зачитать обязательную для лауреата нобелевскую лекцию. К величайшему сожалению Ландау, на церемонии вручения не присутствовал инициатор награждения Нильс Бор — он ушел из жизни поздней осенью 1962 года, не успев убедиться, что его последняя добрая воля по отношению к великому ученику осуществилась.

А Лев Давидович Ландау прожил еще шесть лет и встретил в кругу учеников свое 60-летие. Это была для него последняя юбилейная дата: Ландау умер в 1968 году.

Ландау умер через несколько дней после операции по устранению непроходимости кишечника. Диагноз - тромбоз мезентериальных сосудов. Смерть наступила в результате закупорки артерии оторвавшимся тромбом. Жена Ландау в своих мемуарах высказывала сомнения в компетентности некоторых врачей, лечивших Ландау, особенно врачей из спецклиник по лечению руководства СССР.

В истории науки он останется одной из легендарных фигур ХХ века, — века, заслужившего трагическую честь называться атомным. По прямому свидетельству Ландау, он не испытывал ни тени энтузиазма, участвуя в бесспорно героической эпопее создания советской ядерной энергетики. Им двигали только гражданский долг и неподкупная научная честность. В начале 50-х годов он сказал: «…надо употребить все силы, чтобы не войти в гущу атомных дел… Целью умного человека является самоотстранение от задач, которые ставит перед собой государство, тем более советское государство, которое построено на угнетении».

Научное наследие Ландау

Научное наследие Ландау столь велико и разнообразно, что даже трудно себе представить как мог успеть это сделать один человек всего за какие-то 40 лет. Он разработал теорию диамагнетизма свободных электронов - диамагнетизм Ландау (1930), вместе с Евгением Лифшицем создал теорию доменной структуры ферромагнетиков и получил уравнение движения магнитного момента - уравнение Ландау-Лифшица (1935), ввёл понятие антиферромагнетизма как особой фазы магнетика (1936), вывел кинетическое уравнение для плазмы в случае кулоновского взаимодействия и установил вид интеграла столкновений для заряженных частиц (1936), создал теорию фазовых переходов второго рода (1935-1937), впервые получил соотношение между плотностью уровней в ядре и энергией возбуждения (1937), что позволяет считать Ландау (наряду с Хансом Бете и Виктором Вайскопфом) одним из создателей статистической теории ядра (1937), создал теорию сверхтекучести гелия II, положив тем самым начало созданию физики квантовых жидкостей (1940-1941), совместно с Виталием Лазаревичем Гинзбургом построил феноменологическую теорию сверхпроводимости (1950), развил теорию ферми-жидкости (1956), одновременно с Абдусом Саламом, Тзундао Ли и Чженьнин Янгом и независимо от них предложил закон сохранения комбинированной чётности и выдвинул теорию двухкомпонентного нейтрино (1957). За пионерские исследования в области теории конденсированных сред, в частности теории жидкого гелия, в 1962 году Ландау была присуждена Нобелевская премия по физике.

Огромной заслугой Ландау является создание отечественной школы физиков-теоретиков, в состав которой входили такие учёные как, например, И. Я. Померанчук, И. М. Лифшиц, Е. М. Лифшиц, А. А. Абрикосов, А. Б. Мигдал, Л. П. Питаевский, И. М. Халатников. Научный семинар, которым руководил Ландау, уже ставший легендой, вошел в историю теоретической физики.

Ландау является создателем классического курса теоретической физики (совместно с Евгением Лифшицем). «Механика», «Теория поля», «Квантовая механика», «Статистическая физика», «Механика сплошных сред», «Электродинамика сплошных сред», а все вместе - многотомный «Курс теоретической физики», который переведён на многие языки и по сей день продолжает пользоваться заслуженной любовью студентов-физиков.

Рыцари сферической слойки

Один из самых выдающихся советских физиков, Нобелевский лауреат академик Лев Давидович Ландау (1908-1968) руководил в конце 1940-х — начале 1950-х годов группой теоретиков, проведших фантастические по сложности расчеты ядерных и термоядерных цепных реакций в проектируемой водородной бомбе. Известно, что главным теоретиком в проекте советской атомной бомбы был Яков Борисович Зельдович, позже к проекту водородной бомбы были подключены Игорь Евгеньевич Тамм, Андрей Дмитриевич Сахаров, Виталий Лазаревич Гинзбург, (я здесь называю только тех ученых, участие которых было решающим, не умаляя огромного вклада десятков других выдающихся ученых и конструкторов).

Об участии Ландау и его группы, включавшей Евгения Михайловича Лифшица, Наума Натановича Меймана и других сотрудников, известно гораздо меньше. Между тем недавно в ведущем американском научно-популярном журнале «Сайентифик Американ» (1997, # 2) в статье Геннадия Горелика было констатировано, что группе Ландау удалось сделать то, что оказалось не по силам американцам. Наши ученые дали полный расчет основной модели водородной бомбы, так называемой сферической слойки, в которой чередовались слои с ядерной и термоядерной взрывчаткой — взрыв первой оболочки создавал температуру в миллионы градусов, необходимую для поджига второй. Американцы не смогли рассчитать такую модель и отложили расчеты до появления мощных компьютеров. Наши же все рассчитали вручную. И рассчитали правильно. В 1953 году первая советская термоядерная бомба была взорвана. Ее главные создатели, в том числе Ландау, стали Героями Социалистического Труда. Многие другие были награждены Сталинскими премиями (в том числе ученик и ближайший друг Ландау Евгений Лифшиц).

Естественно, что все участники проектов по изготовлению атомной и водородной бомб находились под плотным контролем спецслужб. В особенности ведущие ученые. Иначе и быть не могло. Сейчас даже как-то неудобно напоминать широко известную историю о том, как американцы в буквальном смысле «профукали» свою атомную бомбу. Имеется в виду немецкий эмигрант, физик Клаус Фукс, работавший на советскую разведку и передавший нашим чертежи бомбы, что резко ускорило работы по ее изготовлению. Гораздо менее известно, что советская шпионка Маргарита Коненкова (жена знаменитого скульптора) трудилась на нашу разведку… в постели с Альбертом Эйнштейном, будучи в течение ряда лет возлюбленной гениального физика. Поскольку Эйнштейн фактически не участвовал в американском атомном проекте, то ничего реально ценного она не могла сообщить. Но, опять-таки, нельзя не признать, что советская госбезопасность в принципе действовала совершенно правильно, обкладывая потенциальные источники важной информации своими сексотами.
Документальный фильм «Десять заповедей Ландау»

Эффект Черенкова

В 1958 году Нобелевская премия была присуждена трем советским ученым - Черенкову П.А., Франку И.М. и Тамму И.Е. «за открытие и истолкование эффекта Черенкова». Иногда в литературе этот эффект называется «Черенкова-Вавилова эффект» («Политехнический словарь», М., 1980).

Заключается он в следующем: это «излучение света (отличное от люминесцентного), возникающее при движении заряженных частиц в веществе, когда их скорость превышает фазовую скорость света в этой среде. Используется в счетчиках заряженных частиц (черенковские счетчики)». При этом возникает законный вопрос: не странно ли, что за открытие эффекта премию получает один автор и два истолкователя этого открытия? Ответ на этот вопрос содержится в книге Коры Ландау-Дробанцевой «Академик Ландау».

«Вот и И.Е.Тамм, по «вине» Ландау, получил Нобелевскую премию за счет Черенкова: Дау получил запрос Нобелевского комитета относительно «Эффекта Черенкова»…

Небольшая справка - Черенков Павел Алексеевич, академик АН СССР с 1970 года, член бюро отделения ядерной физики, еще в 1934 году показал, что при движении быстрой заряженной частицы в совершенно чистом жидком или твердом диэлектрике возникает особое свечение, принципиально отличное как от свечения флуоресцентного, так и от тормозного излучения типа рентгеновского сплошного спектра. В 70-х годах П.А.Черенков работал в Физическом институте им. П.И.Лебедева Академии наук СССР (ФИАН).

«Дау объяснил мне так: «Такую благородную премию, которой должны удостаиваться выдающиеся умы планеты, дать одному дубине Черенкову, который в науке ничего серьезного не сделал, несправедливо. Он работал в лаборатории Франк-Каменецкого в Ленинграде. Его шеф - законный соавтор. Их институт консультировал москвич И.Е.Тамм. Его просто необходимо приплюсовать к двум законным кандидатам (выделено мной - В.Б.).

Добавим, что по свидетельству студентов, слушавших в те времена лекции Ландау, на заданный ему вопрос: кто является физиком номер один, ответил: «Тамм - второй».

«Понимаешь, Коруша, Игорь Евгеньевич Тамм очень хороший человек. Его все любят, для техники он делает много полезного, но, к моему большому сожалению, все его труды в науке существуют до тех пор, пока я их не прочту. Если бы меня не было, его ошибки не были бы обнаружены. Он всегда соглашается со мной, но очень расстраивается. Я ему принес слишком много огорчений в нашей короткой жизни. Человек он просто замечательный. Соавторство в Нобелевской премии его просто осчастливит».

При представлении лауреатов Нобелевской премии Манне Сигбан, член Шведской королевской академии наук, напомнил, что, хотя Черенков «установил общие свойства вновь открытого излучения, математическое описание данного явления отсутствовало». Работа Тамма и Франка, сказал он далее, дала «объяснение,… которое, помимо простоты и ясности, удовлетворяло еще и строгим математическим требованиям»".

Но еще в 1905 году Зоммерфельд, фактически, еще до открытия Черенковым этого явления, дал его теоретическое предсказание. Он писал о возникновении излучения при движении электрона в пустоте со сверхсветовой скоростью. Но по причине установившегося мнения о том, что скорость света в пустоте не может быть превышена никакой материальной частицей, эта работа Зоммерфельда была признана ошибочной, хотя ситуация, когда электрон движется быстрее скорости света в среде, как показал Черешков, вполне возможна.

Игорь Евгеньевич Тамм, видимо, не испытывал удовлетворения от получения Нобелевской премии за эффект Черенкова: «как признавался сам Игорь Евгеньевич, ему куда приятнее было бы получить награду за другой научный результат - обменную теорию ядерных сил» («Сто великих ученых»). Видимо, смелость для такого признания брала истоки у его отца, который «во время еврейского погрома в Елизаветграде… один пошел на толпу черносотенцев с тростью и разогнал ее» («Сто великих ученых»).

«Впоследствии, еще при жизни Тамма, на одном из общих собраний Академии наук один академик публично обвинил его в несправедливом присвоении чужого куска Нобелевской премии.» (Кора Ландау-Дробанцева).

Цитированные выше отрывки наводят на ряд размышлений:

Если бы поменять в этой ситуации местами Ландау и Черенкова, сказав про «дубину Ландау», это было бы воспринято как проявление крайнего антисемитизма, здесь же можно говорить о Ландау как о крайнем русофобе.

Академик Ландау ведет себя как ученый представитель бога на земле, решая, кого наградить за личную преданность себе, кого наказать.

Отвечая на вопрос жены: «А ты согласился бы принять часть этой премии, как Тамм?», академик сказал: «…во-первых, все мои настоящие работы не имеют соавторов, во-вторых, многие мои работы уже давно заслужили Нобелевскую премию, в-третьих, если я печатаю свои работы с соавторами, то это соавторство нужнее моим соавторам…».

Говоря такие слова, академик, как теперь говорят, несколько слукавил, что будет видно из дальнейшего.

И еще один интересный эпизод, описанный женой Ландау: «Дау, за что ты исключил из своих учеников Вовку Левича? Ты с ним рассорился навсегда? - Да, я его «предал анафеме». Понимаешь, я его устроил к Фрумкину, которого считал честным ученым, в прошлом у него были хорошие работы. Вовка сделал приличную работу самостоятельно, я-то знаю. А в печати эта работа появилась за подписями Фрумкина и Левича, а Левича Фрумкин провел в членкоры. Совершился некий торг. С Фрумкиным я тоже перестал здороваться…».

Если попытаться совместить эпизод с вынужденным соавторством по «Эффекту Черенкова» с последним эпизодом Фрумкин-Левич, то возникает вопрос, а не обиделся ли академик Ландау на «Вовку» за то, что тот получил звание члена-корреспондента АН СССР из рук Фрумкина, а не от «самого» Ландау? Тем более, как это видно из сравнения и из приведенных здесь текстов, Ландау никак не могли волновать проблемы ложного соавторства.

Ландау говорил: «…Вот когда я помру, тогда Ленинский комитет обязательно присудит Ленинскую премию посмертно…».

«Дау была присуждена Ленинская премия, когда он еще не умер, но лежал при смерти. Но не за научные открытия. Ему дали в компаньоны Женьку и присудили Ленинскую премию за курс книг по теоретической физике, хотя эта работа тогда не была завершена, не хватало двух томов…».

Здесь, однако, тоже не все благополучно. Так, если вспомнить, что при изучении марксизма говорилось о трех источниках его, так и в этом случае широко были использованы три источника теоретической физики: первый - Уиттекер «Аналитическая динамика», изданная на русском языке в 1937 году, второй - «Курс теоретической физики» А.Зоммерфельда, третий - «Атомные спектры и строение атома» того же автора.

ЛАНДАУ И ВЛАСОВ

Фамилию Власова А.А. (1908-1975), доктора физико-математических наук, автора дисперсионного уравнения по теории плазмы, трудно найти в общеобразовательной литературе, сейчас в новой энциклопедии появилось упоминание об этом ученом, где-то в четыре — пять строк.

В статье М.Коврова «Ландау и другие» («Завтра» №17, 2000) автор пишет: «В солидном научном журнале «Физика плазмы» была опубликована статья ведущих специалистов в этой области А.Ф.Александрова и А.А.Рухадзе «К истории основополагающих работ по кинетической теории плазмы». История эта такова.

В 30-х годах Ландау выведено кинетическое уравнение плазмы, которое должно было в будущем называться уравнением Ландау. Тогда же Власовым было указано на его некорректность: оно было выведено в предположении газового приближения, то есть что частицы основное время находятся в свободном полете и лишь изредка сталкиваются, но «система заряженных частиц есть по существу не газ, а своеобразная система, стянутая далекими силами»; взаимодействие частицы со всеми частицами плазмы по средством создаваемых ими электромагнитных полей - главное взаимодействие, парные же взаимодействия, рассмотренные Ландау, должны учитываться лишь как малые поправки.

Цитирую упомянутую статью: «Власов впервые ввел… понятие дисперсионного уравнения и нашел его решение», «полученные с помощью этого уравнения, в том числе в первую ч очередь самим Власовым, результаты составили основу современной кинетической теории плазмы», заслуги Власова «признаны всей мировой научной общественностью, которая и утвердила в научной литературе название кинетического уравнения с самосогласованным полем как уравнения Власова. Ежегодно в мировой научной печати публикуются сотни и сотни работ по теории плазмы, причем в каждой второй, по крайней мере, произносится имя Власова»".

«О существовании ошибочного уравнения Ландау помнят только узкие специалисты с хорошей памятью.

Однако, пишут Александров и Рухадзе, и сейчас «вызывает недоумение появление в 1949 г. (ниже по тексту М.Ковров отмечает, что в действительности эта статья относится к 1946 году - В.Б.), работы, резко критиковавшей Власова, причем, по существу, необоснованно».

Недоумение вызвано тем обстоятельством, что в этой работе (авторы В.Л.Гинзбург, Л.Д.Ландау, М.А.Леонтович, В.А.Фок) ничего не говорится о фундаментальной монографии Н.Н.Боголюбова 1946 г., получившей к тому времени всеобщее признание и часто цитировавшейся в литературе, где уравнение Власова и его обоснование уже фигурировало в том виде, в котором оно известно сейчас».

«В статье Александрова и Рухадзе нет выдержек из Гинзбурга и др., а они любопытны: «применение метода самосогласованного поля» приводит к выводам, противоречащим простым и бесспорным следствиям классической статистики», чуть ниже - «применение метода самосогласованного поля приводит (как мы сейчас покажем) к результатам, физическая неправильность которых видна уже сама по себе»; «мы оставляем здесь в стороне математические ошибки А.А.Власова, допущенные им при решении уравнений и приведшие его к выводу о существовании «дисперсионного уравнения» (того самого, которое сегодня Является основой современной теории плазмы). Ведь приведи они эти тексты, то получается, что Ландау и Гинзбург не разбираются в простых и бесспорных следствиях классической физики, не говоря уже о математике».

М.Ковров говорит, что Александров и Рухадзе.! «предложили назвать уравнение Власова уравнением Власова-, Ландау. На том основании, что сам Власов считал, что парные взаимодействия, рассмотренные Ландау, хоть и как малые поправки, а ведь должны же учитываться, начисто забыв об организованной Ландау травле» Власова. «И только случайная автомобильная, катастрофа изменила ситуацию: после смерти Ландау в 1968 г. широкая публика увидела в списках лауреатов Ленинской премии 1970 г. неизвестное ей имя Власова…».

Автор приводит также цитату из Ландау: «Рассмотрение указанных работ Власова привело нас к убеждению об их полной несостоятельности и об отсутствии в них каких-либо результатов,! имеющих научную ценность… никакого «дисперсионного уравнения не существует».

М.Ковров пишет: «В 1946 г. двое из авторов разгромной работы, направленной против Власова, избраны академиками, третий получает Сталинскую премию. Услуги Гинзбурга не будут забыты: позже он также станет академиком и народным депутатом СССР от Академии Наук СССР».

Здесь опять возникает вопрос: окажись на месте Власова, допустим, Абрамович, а на месте Гинзбурга, Ландау, Леонтовича, Фока, допустим, Иванов, Петров, Сидоров, Алексеев, то как бы подобная травля была бы воспринята «прогрессивной общественностью»? Ответ простой - как проявление крайнего антисемитизма и «разжигания национальной розни».

М.Ковров заключает: «…В 1946 г. предпринята попытка тотального захвата евреями ключевых позиций в науке, приведшая к ее деградации и практически полному разрушению научной среды…».

Однако к 60-м и 70-м годам положение несколько выправилось и оказалось, что в комитете по присуждению Ленинских премий сидели грамотные люди: Ландау получил премию не за научные достижения, а за создание серии учебников, а Власов за достижения в науке!

Но, как отмечает М.Ковров, «Институт теоретической физики Российской Академии Наук носит имя Ландау, а не Власова». И это, как любят говорить еврейские ученые, медицинский факт!

При близком знакомстве с отношением академика Ландау к чужим работам, выясняется интересная деталь - он очень ревниво и отрицательно относился к чужим научным достижениям. Так в 1957 году, например, выступая на физфаке МГУ Ландау заявил, что Дирак утратил понимание теоретической физики, а его критико-ироническое отношение к общепризнанной теории строения атомного ядра, разработанной Д.Д.Иваненко, тоже было широко известно в среде физиков-теоретиков.

Заметим, Поль Дирак сформулировал законы квантовой статистики, развил релятивистскую теорию движения электрона, на основе которой было предсказано существование позитрона. Он лауреат Нобелевской премии 1933 года - за открытие новых продуктивных форм атомной теории.

ЛАНДАУ И АТОМНАЯ БОМБА

Кора Ландау так описывает участие мужа в создании атомной бомбы: «Это было то время, когда …возглавил эти работы Курчатов. Он обладал могучим талантом организатора. Первое, что он сделал, составил список нужных ему физиков. Первым в этом списке значился Л.Д.Ландау. В те годы только один Ландау мог сделать теоретический расчет для атомной бомбы в Советском Союзе. И он сделал это с большой ответственностью и со спокойной совестью. Он сказал: «Нельзя допустить, чтобы одна Америка обладала оружием дьявола!». И все-таки Дау был Дау! Могущественному в те времена Курчатову он поставил условие: «Бомбу я рассчитаю, сделаю все, но приезжать к вам на заседания буду в крайне необходимых случаях. Все мои материалы по расчету будет к вам привозить доктор наук Я.Б.Зельдович, подписывать мои расчеты будет также Зельдович. Это - техника, а мое призвание - наука».

В результате Ландау получил одну звезду Героя соцтруда, а Зельдович и Сахаров - по три».

И далее: «Военной техникой занялся А.Д.Сахаров, и у него получилась первая водородная бомба на гибель человечества! Возник парадокс - автору водородной бомбы была присуждена премия Нобеля за мир! Как человечеству совместить водородную бомбу и мир?

Да, А.Д.Сахаров - очень хороший, честный, добрый, талантливый. Все это так! Но почему талантливый физик променял науку на политику? Когда он творил водородную бомбу, в его дела никто не вмешивался! Уже во второй половине семидесятых годов я говорила с одним талантливым физиком, академиком, учеником Ландау: «Скажите: если Сахаров - один из талантливейших физиков-теоретиков, почему он никогда не бывал у Ландау?». Мне ответили: «Сахаров - ученик И.Е.Тамма. Он, как и Тамм, занимался техническими расчетами… А Сахарову с Ландау не о чем говорить, он физик-техник, в основном работал на военную технику».

Что же произошло с Сахаровым, когда у него получилась эта злополучная бомба? Его добрая, тонкая душа надломилась, произошел психологический срыв. У доброго, честного человека получилась злая дьявольская игрушка. Есть от чего полезть на стенку. И еще умерла его жена, мать его детей…».

Секретные материалы КГБ

Сегодня рассекречены многие документы советского периода. Вот что пишет Академик РАН А. Н. ЯКОВЛЕВ:

Рассекреченное дело КГБ на знаменитого ученого дает представление о масштабах и методах политического сыска и давления на личность в совсем еще недавнюю эпоху – о чем доносили, что вменяли в вину, за что сажали

источники
http://www.epwr.ru/quotauthor/txt_487.php,
http://ru.science.wikia.com/wiki/%D0%9B%D0%B5%D0%B2_%D0%9B%D0%B0%D0%BD%D0%B4%D0%B0%D1%83
http://www.peoples.ru/science/physics/landau/history2.html
http://landafshits.narod.ru/Dau_KGB_57.htm

А я вам напомню про еще нескольких выдающихся деятелей: , а так же вспомните про Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -

Русские учёные отодвинули завесу непознанного, внеся свою лепту в эволюцию научной мысли во всем мире. Многие великие русские учёные трудились за рубежом в научно-исследовательских учреждениях с мировым именем. Наши земляки сотрудничали со многими выдающимися научными умами. Открытия русских учёных стали катализатором развития технологии и знания во всем мире, а многие революционные идеи и открытия в мире создавались на фундаменте научных достижений известных русских учёных.

Мировые открытия русских учёных в области химии прославили наших соотечественников на века. Менделеев сделал самое важное открытие для мира химии — он описал периодический закон химических элементов. Периодическая таблица получила со временем признание во всём мире и сейчас ею пользуются во всех уголках нашей планеты.

Великим русским учёным в авиационном деле можно назвать Сикорского. Авиаконструктор Сикорский известен своими разработками по созданию многомоторных самолётов. Именно он создал первый в мире летательный аппарат, обладающий техническими характеристиками для вертикального взлёта и посадки — вертолёт.

Не только русские учёные вносили вклад в авиационное дело. К примеру, лётчик Нестеров считается основателем фигур высшего пилотажа, к тому же он впервые предложил использовать освещение взлётной полосы во время ночных полётов.

Известные русские ученые были и в медицине: Пирогов, Боткин , Мечников и другие. Мечников разработал учение о фагоцитозе (защитных факторах организма). Хирург Пирогов впервые применил в полевых условиях наркоз для лечения больного и разработал классические средства оперативного лечения, которыми пользуются и по сей день. А вклад русского ученого Боткина заключался в том, что он впервые в России провёл исследования по экспериментальной терапии и фармакологии.

На примере этих трёх областей науки мы видим, что открытия русских учёных используются во всех сферах жизни. Но это лишь малая доля из всего того, что было открыто русскими учёными. Наши земляки прославили свою выдающуюся родину абсолютно во всех научных дисциплинах, начиная от медицины и биологии, и заканчивая разработками в сфере космических технологий. Русские ученые оставили для нас, своих потомков, огромный клад научных знаний, чтобы обеспечить нас колоссальным материалом для создания новых великих открытий.

Александр Иванович Опарин - известный русский биохимик, автор материалистической теории появления жизни на Земле.

Академик, Герой Социалистического труда, лауреат Ленинской премии.

Детство и юность

Любознательность, пытливость и желание понять, как из крошечного семечка может вырасти, например, огромное дерево, проявилось в мальчике очень рано. Уже в детстве его очень интересовала биология. Жизнь растений он изучал не только по книгам, но и на практике.

Семья Опариных переехала из Углича в загородный дом в деревне Кокаево. Там и прошли самые первые годы детства.

Юрий Кондратюк (Александр Игнатьевич Шаргей), один из выдающихся теоретиков полетов в космос.

В 60-е годы он стал всемирно известным благодаря научному обоснованию способу полетов космических кораблей к Луне.

Рассчитанная им траектория получила название «трассы Кондратюка». Ею пользовались американские космические аппараты «Аполлон» для высадки человека на лунную поверхность.

Детство и юность

Этот один из выдающихся основоположников космонавтики родился в Полтаве 9 (21) июня 1897 года. Свое детство он провел в бабушкином доме. Она была акушеркой, а ее муж земским врачом и государственным чиновником.

Некоторое время с отцом жил в Санкт-Петербурге, где с 1903 учился в гимназии на Васильевском острове. Когда в 1910 году отец умер, мальчик снова вернулся к бабушке.


Изобретатель телеграфа. Имя изобретателя телеграфа навсегда вписано в историю, поскольку изобретение Шиллинга позволило передавать информацию на большие расстояния.

Аппарат позволил использовать радио - и электрические сигналы, идущую по проводам. Необходимость передавать информацию существовала всегда, но в 18-19 вв. в условиях растущей урбанизации и развития технологий, обмен данными стал актуальным.

Эту задачу решил телеграф, термин с древнегреческого языка переводился, как «писать далеко».


Эмилий Христианович Ленц - знаменитый русский учёный.

Со школьной скамьи всем нам знаком закон Джоуля - Ленца, устанавливающий, что выделяемое током в проводнике количество теплоты пропорционально силе тока и сопротивлению проводника.

Другой известный закон - «правило Ленца», по которому индукционный ток всегда движется в направлении, обратном тому действию, которое его породило.

Ранние годы

Изначальное имя учёного - Генрих Фридрих Эмиль Ленц. Родился он в Дерпте (Тарту) и по происхождению являлся прибалтийским немцем.

Его брат Роберт Христианович стал известным востоковедом, а сын, также Роберт, пошёл по стопам отца и стал физиком.

Тредиаковский Василий человек с трагической судьбой. Так было угодно судьбе, что в России в одно время жили два самородка — Ломоносов и Тредиаковский, но один будет обласкан и останется в памяти потомков, а второй умрёт в нищете забытый всеми.

Из школяра в филологи

В 1703 году 5 марта появился на свет Василий Тредиаковский. Он рос в Астрахани в небогатой семье священнослужителя. 19 - летний юноша отправился в Москву пешком для продолжения учёбы в Славяно-греко-латинской академии.

Но в ней он задержался ненадолго (2 года) и без сожаления уехал пополнять багаж знаний в Голландию, а затем и во Францию — в Сорбонну, где терпя нужду и голод, отучился 3 года.

Здесь он участвовал в публичных диспутах, постигал математические и философские науки, был слушателем богословия, изучал за границей французский и итальянский языки.


«Отец Сатаны», академик Янгель Михаил Кузьмич, родился 25.10.1911 года в дер. Зырянова, Иркутской обл., происходил из семьи потомков поселенцев-каторжан. По окончании 6-го класса (1926 г.), Михаил уезжает в Москву - к своему старшему брату Константину, который там учился. Когда учился в 7-м классе, занимался подработкой, разносит стопки газет - заказы типографии. По окончании ФЗУ, трудился на фабрике и одновременно учился на рабфаке.

Студент МАИ. Начало профессиональной карьеры

В 1931 г., поступает учиться в МАИ - по специальности «самолетостроение», и заканчивает его в 1937 г. Еще студентом, Михаил Янгель устраивается в КБ Поликарпова, в дальнейшем, своего научного руководителя по защите дипломного проекта: «Высотный истребитель с герметической кабиной». Начав свою работу в КБ Поликарпова конструктором 2-й категории, через десять лет М.К. Янгель уж являлся ведущим инженером, занимался разработкой проектов для истребителей новых модификаций.

13.02.1938 г., М.К. Янгель в составе группы советских специалистов в области авиастроения СССР посещает Соединенные Штаты - с целью командировки. Стоит отметить, что 30-е годы ХХ века - это достаточно активный период в сотрудничестве СССР и США и не только в области машиностроения и самолетостроения, в частности, закупалось (достаточно ограниченными партиями) стрелковое оружие - пистолеты-пулеметы Томпсона и пистолеты Кольта.


Ученый, основатель теории вертолетостроения, докторр технических наук, профессор Михаил Леонтьевич Миль обладатель Ленинской и Государственной премий, Герой Социалистического труда.

Детство, учеба, юность

Михаил Леонтьев родился в Иркутске , 22.11.1909 г. - в семье железнодорожного служащего и врача-стоматолога. Прежде чем осесть в городе Иркутск, его отец, Леонтий Самуилович, в течение 20-ти лет искал золото, работая на приисках. Дед, Самуил Миль, поселился в Сибири по окончании 25-летней флотской службы. С детских лет, Михаил проявлял разносторонние таланты: любил рисовать, увлекался музыкой и легко осваивал иностранные языки, занимался в авиамодельном кружке. В десятилетнем возрасте, участвовал в Сибирском авиамодельном конкурсе, где пройдя этап, Мишина модель была отправлена в город Новосибирск, где и получила один из призов.

Начальную школу, Михаил оканчивал в Иркутске, по завершении которой в 1925 г., он поступает в Сибирский технологический институт.

А.А. Ухтомский - выдающийся физиолог, ученый, исследователь мышечной и нервной систем, а также органов чувств, лауреат Ленинской премии и член Академии наук СССР.

Детство. Образование

Рождение на свет Алексея Алексеевича Ухтомского произошло 13.(25).06.1875 в небольшом городке Рыбинске. Там же прошли его детские годы и юность. Этот волжский город навсегда оставил в душе Алексея Алексеевича самые теплые и нежные воспоминания. Он с гордостью величал себя волгарём в течение всей жизни. Когда мальчик окончил начальную гимназию, отец отправил его в Нижний Новгород и определил в местный кадетский корпус. Сын послушно окончил его, но военная служба никогда не была пределом мечтаний юноши, которого больше привлекали такие науки как история и философия.

Увлечение философией

Проигнорировав службу в армии, он поехал в Москву и поступил в духовную семинарию на два факультета сразу - философский и исторический. Глубоко изучая философию, Ухтомский стал много думать над извечными вопросами о мире, о человеке, о сущности бытия. В конце концов философские тайны привели его к изучению естественных наук. В результате он остановился на физиологии.

А.П. Бородина знают как выдающегося композитора, автора оперы «Князь Игорь», симфонии «Богатырская» и других музыкальных произведений.

Гораздо меньше он известен как ученый, внесший неоценимый вклад в науку в области органической химии.

Происхождение. Ранние годы

А.П. Бородин был внебрачным сыном 62-летнего грузинского князя Л. С. Геневанишвили и А.К. Антоновой. Родился он 31.10.(12.11) 1833 года.

Его записали как сына крепостных слуг князя - супругов Порфирия Ионовича и Татьяны Григорьевны Бородиных. Таким образом, восемь лет мальчик числился в доме отца как крепостной. Но перед смертью (1840) князь выдал на сына вольную, купил ему и его матери Авдотье Константиновне Антоновой четырехэтажный дом, предварительно выдав ее замуж за военврача Клейнеке.

Мальчика, во избежание ненужных слухов, представляли племянником Авдотьи Константиновны. Поскольку происхождение не позволяло Александру учиться в гимназии, он обучался дома всем предметам гимназического курса, кроме того, немецкому и французскому языкам, получив прекрасное домашнее образование.

Аристотель (384–322 до н. э.)

Аристотель - выдающийся древнегреческий учёный энциклопедист, философ и логик, основатель классической (формальной) логики. Считается одним из величайших гениев в истории и самым влиятельным философом древности. Сделал огромный вклад в развитие логики и естественных наук, особенно астрономии, физики и биологии. Хотя многие из его научных теорий были опровергнуты, они значительно поспособствовали поиску новых гипотез их объяснения.

Архимед (287–212 до н. э.)


Архимед - известный древнегреческий математик, изобретатель, астроном, физик и инженер. Как правило, считается величайшим математиком всех времён и одним из ведущих учёных классического периода античности. Среди его вклада в области физики - фундаментальные принципы гидростатики, статики и объяснение принципа действия на рычаг. Ему приписывают изобретение новаторских механизмов, включая осадные машины и винтовой насос, названый в его честь. Архимед также изобрёл спираль, которая носит его имя, формулы для расчёта объёмов поверхностей вращения и оригинальную систему для выражения очень больших чисел.

Галилео (1564–1642)


На восьмом месте в рейтинге самых великих учёных в истории мира находится Галилео - итальянский физик, астроном, математик и философ. Был назван «отцом наблюдательной астрономии» и «отцом современной физики». Галилео стал первым, кто использовал телескоп для наблюдений за небесными телами. Благодаря этому он сделал ряд выдающихся астрономических открытий, таких как открытие четырёх крупнейших спутников Юпитера, солнечных пятен, вращение Солнца, а также установил, что Венера меняет фазы. Ещё он изобрёл первый термометр (без шкалы) и пропорциональный циркуль.

Майкл Фарадей (1791–1867)


Майкл Фарадей - английский физик и химик, в первую очередь известен за открытие электромагнитной индукции. Фарадей также открыл химическое действие тока, диамагнетизм, действие магнитного поля на свет, законы электролиза. Ещё он изобрёл первый, хотя и примитивный электрический двигатель, и первый трансформатор. Ввёл термины катод, анод, ион, электролит, диамагнетизм, диэлектрик, парамагнетизм и др. В 1824 году открыл химические элементы бензол и изобутилен. Некоторые историки считают Майкла Фарадея лучшим экспериментатором в истории науки.

Томас Алва Эдисон (1847–1931)


Томас Алва Эдисон - американский изобретатель и бизнесмен, основатель престижного научного журнала Science. Считается одним из самых плодовитых изобретателей своего времени с рекордным количеством выданных патентов на его имя - 1093 в США и 1239 в других странах. Среди его изобретений - создание в 1879 году электрической лампы накаливания, системы распределения электроэнергии потребителям, фонографа, усовершенствование телеграфа, телефона, киноаппаратуры и т. д.

Мари Кюри (1867–1934)


Мария Склодовская-Кюри - французский физик и химик, педагог, общественный деятель, пионер в области радиологии. Единственная женщина лауреат Нобелевской премии в двух различных областях науки - физики и химии. Первая женщина профессор, преподающая в университете Сорбонна. Её достижения включают разработку теории радиоактивности, методы разделения радиоактивных изотопов и открытие двух новых химических элементов - радия и полония. Мари Кюри является одним из изобретателей, которые погибли от своих изобретений .

Луи Пастер (1822–1895)


Луи Пастер - французский химик и биолог, один из основателей микробиологии и иммунологии. Открыл микробиологическую суть брожения и многих болезней человека. Инициировал новый отдел химии - стереохимии. Наиболее важным достижением Пастера считаются работы по бактериологии и вирусологии, в результате которых были созданы первые вакцины против бешенства и сибирской язвы. Его имя широко известно благодаря созданной им и названной позже в его честь технологии пастеризации. Все работы Пастера стали ярким примером сочетания фундаментальных и прикладных исследований в области химии, анатомии и физики.

Сэр Исаак Ньютон (1643–1727)


Исаак Ньютон - выдающийся английский физик, математик, астроном, философ, историк, исследователь Библии и алхимик. Является первооткрывателем законов движения. Сэр Исаак Ньютон открыл закон всемирного тяготения, заложил основы классической механики, сформулировал принцип сохранения импульса, заложил основы современной физической оптики, построил первый телескоп-рефлектор и развил теорию цвета, сформулировал эмпирический закон теплообмена, построил теорию скорости звука, провозгласил теорию о происхождении звёзд и многие другие математические и физические теории. Ньютон также стал первым, кто математически описал явление приливов.

Альберт Эйнштейн (1879–1955)


Второе место в списке самых великих учёных в истории мира занимает Альберт Эйнштейн - немецкий физик еврейского происхождения, один из величайших физиков-теоретиков ХХ века, создатель общей и специальной теории относительности, открыл закон взаимосвязи массы и энергии, а также многих других значительных физических теорий. Победитель Нобелевской премии по физике в 1921 году за открытие закона фотоэлектрического эффекта. Автор более 300 научных работ по физике и 150 книг и статей в области истории, философии, публицистики и др.

Никола Тесла (1856–1943)


Самым великим учёным всех времён считается Никола Тесла - сербский и американский изобретатель, физик, инженер-электромеханик, известный своими достижениями в области переменного тока, магнетизма и электротехники. В частности, ему принадлежат изобретения переменного тока, полифазовои системы и электродвигателя с переменным током. Всего же Тесла является автором около 800 изобретений в области электро- и радиотехники, в их числе первые электрические часы, двигатель на солнечной энергии, радио и т. д. Был ключевой фигурой при построении первой гидроэлектростанции на Ниагарском водопаде.







2024 © kubanteplo.ru.